

SysFlow Telemetry Pipeline

The SysFlow Telemetry Pipeline is a framework for monitoring cloud and enterprise workloads. The framework builds the plumbing required for system telemetry so that users can focus on writing and sharing analytics on a scalable, common open-source platform.

Note

If in a hurry, skip to our quick start [https://sysflow.readthedocs.io/en/latest/quick.html] guide.

The backbone of the telemetry pipeline is a new data format [https://sysflow.readthedocs.io/en/latest/spec.html] which lifts raw system event information into an abstraction that describes process behaviors, and their relationships with containers, files, and network activity. This object-relational format is highly compact, yet it provides broad visibility into legacy endpoints and container clouds.

The platform is designed as a pluggable edge processing architecture which includes a policy engine that accepts declarative policies that support edge filtering, tagging, and alerting on SysFlow streams. It also offers several APIs that allow users to process SysFlow with their favorite toolkits.

The pipeline can be deployed [https://sysflow.readthedocs.io/en/latest/deploy.html] using Docker, Kubernetes, OpenShift, and bare metal/VMs. The SysFlow agent [https://sysflow.readthedocs.io/en/latest/quick.html#deployment-options] can be configured as an edge analytics pipeline to stream SysFlow records through rsyslog, or as a batch exporter of raw SysFlow traces to S3-compatible object stores.

An integrated Jupyter environment [https://sysflow.readthedocs.io/en/latest/quick.html#analyzing-collected-traces] makes it easy to perform log hunting on collected traces. There are also Apache Avro schema files for SysFlow so that users can generate APIs for other programming languages. C++, Python, and Golang APIs [https://github.com/sysflow-telemetry/sf-apis] are available, allowing users to interact with SysFlow traces programmatically.

To learn more about SysFlow, check the table of contents below.

We welcome feedback, bug reports, and contributions!

Keep in touch

Please connect with us on our Slack [https://join.slack.com/t/sysflow-telemetry/shared_invite/enQtODA5OTA3NjE0MTAzLTlkMGJlZDQzYTc3MzhjMzUwNDExNmYyNWY0NWIwODNjYmRhYWEwNGU0ZmFkNGQ2NzVmYjYxMWFjYTM1MzA5YWQ] community!

Bugs & Feature requests

For bugs and feature requests, please check our issue tracker [https://github.com/sysflow-telemetry/sf-docs/issues].

License

SysFlow and all projects are released under the Apache v2.0 license.

Contents:

	Quick Start
	Deployment options

	Inspecting collected traces

	Analyzing collected traces

	SysFlow Specification
	Overview

	LibSysFlow
	Basic Usage

	Public API

	Installation

	Compilation

	Advanced Usage

	SysFlow Collector (sf-collector repo)
	Build

	Running

	Event rate optimization

	SysFlow Processor (sf-processor repo)
	Pre-requisites

	Build

	Usage

	Configuration

	Policy Language

	Plugins

	Docker usage

	SysFlow Exporter (sf-exporter repo)
	Build

	Docker usage

	Development

	SysFlow APIs and Utilities (sf-apis repo)
	SysFlow APIs and Utilities

	SysFlow Python API Reference

	Deployments (sf-deployments repo)
	Docker Compose

	Helm Charts

	Binary packages (deb|rpm)

	License

	Contributing
	Contributing In General

	Legal

	Communication

	Setup

	Testing

	Coding style guidelines

	Code of Conduct

	Contributor Covenant Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

	Talks & Publications

Indices and tables

	Index

	Module Index

	Search Page

Quick Start

We encourage you to check the documentation first, but here are a few tips for a quick start.

Deployment options

The SysFlow agent can be deployed in batch or edge processing export configurations. In the batch configuration, SysFlow exports the collected telemetry as trace files (batches of SysFlow records) to any S3-compliant object storage service.

In edge processing configuration, SysFlow exports the collected telemetry as events streamed to a rsyslog collector or Elasticsearch. This deployment enables the creation of customized edge pipelines, and offers a built-in policy engine to filter, enrich, and alert on SysFlow records.

Instructions for Docker Compose, Helm, and binary package deployments of complete SysFlow stacks are available here [https://sysflow.readthedocs.io/en/latest/deploy.html].

Inspecting collected traces

A command line utilitiy [https://hub.docker.com/r/sysflowtelemetry/sysprint] is provided for inspecting collected traces or convert traces from SysFlow’s compact binary format into human-readable JSON or CSV formats.

docker run --rm -v /mnt/data:/mnt/data sysflowtelemetry/sysprint /mnt/data/<trace>

where trace is the the name of the trace file inside /mnt/data. If empty, all files in /mnt/data are processed. By default, the traces are printed to the standard output with a default set of SysFlow attributes. For a complete list of options, run:

docker run --rm -v /mnt/data:/mnt/data sysflowtelemetry/sysprint -h

This command line tool can also be installed directly on the host using pip.

python3 -m pip install sysflow-tools

Analyzing collected traces

A Jupyter environment [https://hub.docker.com/r/sysflowtelemetry/sfnb] is available for inspecting and implementing analytic notebooks on collected SysFlow data. It includes APIs for data manipulation using Pandas dataframes and a native query language (sfql) with macro support. To start it locally with example notebooks, run:

git clone https://github.com/sysflow-telemetry/sf-apis.git && cd sf-apis
docker run --rm -d --name sfnb -v $(pwd)/pynb:/home/jovyan/work -p 8888:8888 sysflowtelemetry/sfnb

Then, open a web browser and point it to http://localhost:8888 (alternatively, the remote server name or IP where the notebook is hosted). To obtain the notebook authentication token, run docker logs sfnb.

SysFlow Specification

The SysFlow format lifts raw system event information into an abstraction that describes process behaviors, and their relationships with containers, files, and network. This object-relational format is highly compact, yet it provides broad visibility into container clouds. The framework includes several APIs that allow users to process SysFlow with their favorite toolkits.

Overview

Figure 1 shows a diagram of the SysFlow format.

Entities represent the components on a system that we are interested in monitoring. We currently support four types of entities: Pods, Containers, Processes, and Files. As shown in Figure 1, Containers contain references to both Pods, Processes and Files, and the four are linked through object identifiers (more on this later).

Entity behaviors are modeled as events or flows. Events represent important individual behaviors of an entity that are broken out on their own due to their importance, their rarity, or because maintaining operation order is important. An example of an event would be a process clone or exec, or the deletion or renaming of a file. By contrast, a Flow represents an aggregation of multiple events that naturally fit together to describe a particular behavior. For example, we can model the network interactions of a process and a remote host as a bidirectional flow that is composed of several events, including connect, read, write, and close. SysFlow also model events generated by the Kubernetes controller.

SysFlow enables users to configure the granularity of system-level data desired based on resource limitations and data analytics requirements. In this way, behaviors can be broken out into individual events or combined into smaller aggregated volumetric flows. The current specification describes events and flows in three key behavioral areas: Files, Networks, and Processes.

[image: SF_Object_View.png]
 [https://sysflow.readthedocs.io/en/latest/_static/SF_Object_View_v5.png]Figure 1: SysFlow Object Relational View

Entities

Entities are the components on a system that we are interested in monitoring. These include pods, containers, processes, and files. We also support a special entity object called a Header, which stores information about the SysFlow version, and a unique ID representing the host or virtual machine monitored by the SysFlow exporter. The header is always the first record appearing in a SysFlow File. All other entities contain a timestamp, an object ID and a state. The timestamp is used to indicate the time at which the entity was exported to the SysFlow file.

Object ID

Object IDs allow events and flows to reference entities without having duplicate information stored in each record. Object IDs are not required to be globally unique across space and time. In fact, the only requirement for uniqueness is that no two objects managed by a SysFlow exporter can have the same ID simultaneously. Entities are always written to the binary output file before any events, and flows associated with them are exported. Since entities are exported first, each event, and flow is matched with the entity (with the same id) that is closest to it in the file. Furthermore, every binary output file must be self-contained, meaning that all entities referenced by flows/events must be present in every SysFlow file generated.

State

The state is an enumeration that indicates why an entity was written to disk. The state can currently be one of three values:

	State

	Description

	CREATED

	Indicates that the entity was recently created on the host/VM. For example, a process clone.

	MODIFIED

	Indicates that some attributes of the entity were modified since the last time it was exported.

	REUP

	Indicates that the entity already existed, but is being exported again, so that output files can be self-contained.

Each entity is defined below with recommendations on what to use for object identifiers, based on what is used in the current implementation of the SysFlow exporter.

Header

The Header entity is an object which appears at the beginning of each binary SysFlow file. It contains the current version of SysFlow as supported in the file, and the exporter ID.

	Attribute

	Type

	Description

	Since (schema version)

	version

	long

	The current SysFlow version.

	1

	exporter

	string

	Globally unique id representing the host monitored by SysFlow.

	1

	ip

	string

	IP address in dot notation representing the monitored host.

	2

Container

The Container entity represents a system or application container such as docker or LXC. It contains important information about the container including its id, name, and whether it is privileged.

	Attribute

	Type

	Description

	Since (schema version)

	id

	string

	Unique string representing the Container Object as provided by docker, LXC, etc.

	1

	state

	enum

	state of the process (CREATED, MODIFIED, REUP).

	not implemented

	timestamp (ts)

	int64

	The timestamp when container object is exported (nanoseconds).

	not implemented

	name

	string

	Container name as provided by docker, LXC, etc.

	1

	image

	string

	Image name associated with container as provided by docker, LXC, etc.

	1

	imageID

	string

	Image ID associated with container as provided by docker, LXC, etc.

	1

	type

	enum

	Can be one of: CT_DOCKER, CT_LXC, CT_LIBVIRT_LXC, CT_MESOS, CT_RKT, CT_CUSTOM

	1

	privileged

	boolean

	If true, the container is running with root privileges

	1

Pods

The Pod entity represents a logical aggregation of containers in Kubernetes. It contains metadata about k8s pod including its id, name, and host and internal IPs.

	Attribute

	Type

	Description

	Since (schema version)

	id

	string

	Unique string representing the Pod Object as provided by k8s or OpenShift

	4

	timestamp (ts)

	int64

	The timestamp when pod object is exported (nanoseconds)

	4

	name

	string

	Pod name

	4

	nodeName

	string

	None name

	4

	hostIP

	int32

	Host IP address (the exposed IP address of the Pod)

	4

	internalIP

	int32

	Internal Pod IP address

	4

	namespace

	string

	Namespace in which the pod runs

	4

	restartCount

	int64

	Number of restarts that have occurred for the pod

	4

	labels

	string[]

	Labels associated with the pod

	4

	selectors

	Selector[]

	K8s selectors associated with the pod

	4

	services

	Service[]

	K8s services associated with the pod

	4

Process

The process entity represents a running process on the system. It contains important information about the process including its host pid, creation time, oid id, as well as references to its parent id. When a process entity is exported to a SysFlow file, all its parent processes should be exported before the process, as well as the process’s Container entity. Processes are only exported to a SysFlow file if an event or flow associated with that process or any of its threads are exported. Threads are not explicitly exported in the process object but are represented in events and flows through a thread id field. Finally, a Process entity only needs to be exported to a file once, unless it’s been modified by an event or flow.

NOTE In current implementation, the creation timestamp is the time at which the process is cloned. If the process was cloned before capture was started, this value is 0. The current implementation also has problems getting absolute paths for exes when relative paths are used to launch processes.

	Attribute

	Type

	Description

	Since (schema version)

	state

	enum

	state of the process (CREATED, MODIFIED, REUP)

	1

	OID:

 LibSysFlow

LibSysFlow

LibSysFlow is a library for creating SysFlow consumers. It defines a concise API and export first-class SysFlow data types for consumers to transparently process SysFlow records and manage access to the underlying Falco libs and driver.

The main interface accepts a config object in which a callback function can be set to process SysFlow records. The config option sets optimal defaults that can be customized by the consumer. The library is packaged as a static (.a) library and distributed as an rpm/deb/tgz artifact with sf-collector releases (both glibc and musl flavors are available).

Additionally, libsysflow performs the checks to verify that the Falco driver is loaded and outputs an exception otherwise. Consumers load the Falco libs driver prior to running their main entrypoint, following the typical entrypoint recipe/script used by Falco and the SysFlow Collector.

Basic Usage

Below is a minumum example of a SysFlow consumer that uses LibSysFlow. A more complete example can be found here [https://github.com/sysflow-telemetry/sf-collector/tree/dev/examples/callback.cpp]. The SysFlow Collector also uses LibSysFlow and serves as a reference implementation [https://github.com/sysflow-telemetry/sf-collector/tree/dev/src/collector] for library consumers.

// consumer-defined callback function
void process_sysflow(sysflow::SFHeader* header, sysflow::Container* cont, sysflow::Process* proc, sysflow::File* f1, sysflow::File* f2, sysflow::SysFlow* rec) {
 // your switch block here
}

// example consumer
int main(int argc, char **argv) {
 SysFlowConfig* config = sysflowlibscpp::InitializeSysFlowConfig();
 config->callback = process_sysflow;
 sysflowlibscpp::SysFlowDriver *driver = new sysflowlibscpp::SysFlowDriver(config);
 driver->run();
}

Public API

The public interface for the SysFlow libs offers two objects: SysFlowConfig and SysFlowDriver.

SysFlowConfig

The SysFlowConfig object is a struct, which contains all settings for the libs and must be passed into the SysFlowDriver constructor. A more detailed description of the configuration settings for SysFlowConfig can be found in Advanced Usage.

	Method

	Description

	SysFlowConfig *sysflowlibscpp::InitializeSysFlowConfig()

	Initializes the configuration object with a set of default values

SysFlowDriver

The SysFlowDriver object is the main object for collecting and exporting SysFlow data. The driver also supports system call ingestion from the following sources: SCAP file, kernel module (live), and ebpf probe (live). Configurations for file ingestion are currently set by the SysFlowConfig object. For live capture, the kernel module is loaded by default; however, one can use the ebpf probe by currently exporting the FALCO_BPF_PROBE environment variable (e.g., export FALCO_BPF_PROBE="") before launching the binary. Note that probes are launched by running the falco-driver-loader script described below. Finally, the driver offers a collection mode option, which determines which system calls are collected. See the collectionMode attribute in the Configuration section below for more details. The driver currently supports three export options: to avro encoded file, over unix domain socket, and call to user-defined callback function (see example above). Export options are configured using the SysFlowConfig option.

	Method

	Description

	SysFlowDriver(sysflowlibscpp::SysFlowConfig *config

	Driver constructor configures the driver based on the settings in the SysFlowConfig object.

 SysFlow Collector (sf-collector repo)

SysFlow Collector (sf-collector repo)

The SysFlow Collector monitors and collects system call and event information from hosts
and exports them in the SysFlow format using Apache Avro object serialization. It’s built atop
libSysFlow [https://sysflow.readthedocs.io/en/dev/libs.html], a library
that lifts system call information into SysFlow, a higher order object relational format that
models how containers, processes and files interact with their environment through process
control flow, file, and network operations. Learn more about SysFlow in the SysFlow Specification
Document.

The SysFlow Collector builds on the CNCF Falco libs [https://github.com/falcosecurity/libs] to
passively collect system events and turn them into SysFlow. As a result, the collector supports the
libs’ powerful filtering capabilities. Check the build and installation instructions for installing
the collector.

	Build
	Cloning sources

	Manifest

	Building using Docker

	Building directly on a host

	Binary Packaging

	Running
	Command line usage

	Docker usage

	Event rate optimization

 Build

Build

Cloning sources

This document describes how to build libSysFlow and run the SysFlow Collector both inside a docker container and on a linux host. Binary packages are also available in the deployments repository [https://github.com/sysflow-telemetry/sf-deployments]. Building and running the application inside a docker container is the easiest way to start. For convenience, skip the build step and pull pre-built images directly from Docker Hub [https://hub.docker.com/r/sysflowtelemetry/sf-collector].

To build the project, first clone the repository:

git clone --recursive https://github.com/sysflow-telemetry/sf-collector.git

Manifest

The manifest [https://github.com/sysflow-telemetry/sf-collector/makefile.manifest.inc] file contains the metadata and versions of dependencies used to build libSysFlow and the Collector. It can be modified to customize the build to specifc package versions.

Building using Docker

This is the simplest way of reliably building the collector. To build using docker, run:

make build

Note A musl build can be triggered using the build/musl target instead.

If this is your first time building the collector, run the build task in the background and go grab a coffee :) If you have cores to spare, the build time can be reduced by setting concurrent make jobs. For example,

make MAKE_JOBS=8 build

During the initial build, a number of base images are created. These are only needed once per dependency version set. Pre-built versions of these images are also available in Docker Hub [https://hub.docker.com/u/sysflowtelemetry] and GHCR [https://github.com/orgs/sysflow-telemetry/packages?repo_name=sf-collector].

	Image

	Tag

	Description

	Dockerfile

	ghcr.io/sysflow-telemetry/ubi

	base-

 SysFlow Processor (sf-processor repo)

SysFlow Processor (sf-processor repo)

The SysFlow processor is a lighweight edge analytics pipeline that can process and enrich SysFlow data. The processor is written in golang, and allows users to build and configure various pipelines using a set of built-in and custom plugins and drivers. Pipeline plugins are producer-consumer objects that follow an interface and pass data to one another through pre-defined channels in a multi-threaded environment. By contrast, a driver represents a data source, which pushes data to the plugins. The processor currently supports two builtin drivers, including one that reads sysflow from a file, and another that reads streaming sysflow over a domain socket. Plugins and drivers are configured using a JSON file.

A core built-in plugin is a policy engine that can apply logical rules to filter, alert, or semantically label sysflow records using a declarative language based on the Falco rules syntax [https://falco.org/docs/rules/] with a few added extensions (more on this later).

Custom plugins and drivers can be implemented as dynamic libraries to tailor analytics to specific user requirements.

The endpoint of a pipeline configuration is an exporter plugin that sends the processed data to a target. The processor supports various types of export plugins for a variety of different targets.

Pre-requisites

The processor has been tested on Ubuntu/RHEL distributions, but should work on any Linux system.

	Golang version 1.17+ and make (if building from sources)

	Docker, docker-compose (if building with docker)

Build

Clone the processor repository

git clone https://github.com/sysflow-telemetry/sf-processor.git

Build locally, from sources

cd sf-processor
make build

Build with docker

cd sf-processor
make docker-build

Usage

For usage information, type:

cd driver/
./sfprocessor -help

This should yield the following usage statement:

Usage: sfprocessor [[-version]|[-driver <value>] [-log <value>] [-driverdir <value>] [-plugdir <value>] path]
Positional arguments:
 path string
 Input path
Arguments:
 -config string
 Path to pipeline configuration file (default "pipeline.json")
 -cpuprofile file
 Write cpu profile to file
 -driver string
 Driver name {file|socket|<custom>} (default "file")
 -driverdir string
 Dynamic driver directory (default "../resources/drivers")
 -log string
 Log level {trace|info|warn|error} (default "info")
 -memprofile file
 Write memory profile to file
 -plugdir string
 Dynamic plugins directory (default "../resources/plugins")
 -test
 Test pipeline configuration
 -traceprofile file
 Write trace profile to file
 -version
 Output version information

The four most important flags are config, driverdir, plugdir, and driver. The config flag points to a pipeline configuration file, which describes the entire pipeline and settings for the individual settings for the plugins. The driverdir and plugdir flags specify where any dynamic drivers and plugins shared libraries reside that should be loaded by the processor at runtime. The driver flag accepts a label to a pre-configured driver (either built-in or custom) that will be used as the data source to the pipeline. Currently, the pipeline only supports one driver at a time, but we anticipate handling multiple drivers in the future. There are two built-in drivers:

	file: loads a sysflow file reading driver that reads from path.

	socket: the processor loads a sysflow streaming driver. The driver creates a domain socket named path
and acts as a server waiting for a SysFlow collector to attach and send sysflow data.

Configuration

The pipeline configuration below shows how to configure a pipeline that will read a sysflow stream and push records to the policy engine, which will trigger alerts using a set of runtime policies stored in a yaml file. An example pipeline with this configuration looks as follows:

{
 "pipeline":[
 {
 "processor": "sysflowreader",
 "handler": "flattener",
 "in": "sysflow sysflowchan",
 "out": "flat flattenerchan"
 },
 {
 "processor": "policyengine",
 "in": "flat flattenerchan",
 "out": "evt eventchan",
 "policies": "../resources/policies/runtimeintegrity"
 },
 {
 "processor": "exporter",
 "in": "evt eventchan",
 "export": "syslog",
 "proto": "tcp",
 "tag": "sysflow",
 "host": "localhost",
 "port": "514"
 }
]
}

NOTE: This configuration can be found in: sf-collector/resources/pipelines/pipeline.syslog.json

This pipeline specifies three built-in plugins:

	sysflowreader [https://github.com/sysflow-telemetry/sf-processor/blob/master/core/processor/processor.go]: is a generic reader plugin that ingests sysflow from the driver, caches entities, and presents sysflow objects to a handler object (i.e., an object that implements the handler interface [https://github.com/sysflow-telemetry/sf-apis/blob/master/go/plugins/handler.go]) for processing. In this case, we are using the flattener [https://github.com/sysflow-telemetry/sf-processor/blob/master/core/flattener/flattener.go] handler, but custom handlers are possible.

	policyengine [https://github.com/sysflow-telemetry/sf-processor/blob/master/core/policyengine/policyengine.go]: is the policy engine, which takes flattened [https://github.com/sysflow-telemetry/sf-apis/blob/master/go/sfgo/flatrecord.go] (row-oriented) SysFlow records as input and outputs records [https://github.com/sysflow-telemetry/sf-processor/blob/master/core/policyengine/engine/types.go], which represent alerts, or filtered sysflow records depending on the policy engine’s mode (more on this later).

	exporter [https://github.com/sysflow-telemetry/sf-processor/blob/master/core/exporter/exporter.go]: takes records from the policy engine, and exports them to ElasticSearch, syslog, file, or terminal, in a JSON format or in Elastic Common Schema (ECS) format. Note that custom export plugins can be created to export to other serialization formats and transport protocols.

Each plugin has a set of general attributes that are present in all plugins, and a set of attributes that are custom to the specific plugins. For more details on the specific attributes in this example, see the pipeline configuration template [https://github.com/sysflow-telemetry/sf-processor/blob/master/driver/pipeline.template.json]

The general attributes are as follows:

	processor (required): the name of the processor plugin to load. Processors must implement the SFProcessor [https://github.com/sysflow-telemetry/sf-apis/blob/master/go/plugins/processor.go] interface; the name is the value that must be returned from the GetName() function as defined in the processor object.

	handler (optional): the name of the handler object to be used for the processor. Handlers must implement the SFHandler [https://github.com/sysflow-telemetry/sf-apis/blob/master/go/plugins/handler.go] interface.

	in (required): the input channel (i.e. golang channel) of objects that are passed to the plugin.

	out (optional): the output channel (i.e. golang channel) for objects that are pushed out of the plugin, and into the next plugin in the pipeline sequence.

Channels are modelled as channel objects that have an In attribute representing some golang channel of objects. See SFChannel [https://github.com/sysflow-telemetry/sf-apis/blob/master/go/plugins/processor.go] for an example. The syntax for a channel in the pipeline is [channel name] [channel type]. Where channel type is the label given to the channel type at plugin registration (more on this later), and channel name is a unique identifier for the current channel instance. The name and type of an output channel in one plugin must match that of the name and type of the input channel of the next plugin in the pipeline sequence.

NOTE: A plugin has exacly one input channel but it may specify more than one output channels. This allows pipeline definitions that fan out data to more than one receiver plugin similar to a Unix tee command. While there must be always one SysFlow reader acting as the entry point of a pipeline, a pipeline configuration may specify policy engines passing data to different exporters or a SysFlow reader passing data to different policy engines. Generally, pipelines form a tree rather being a linear structure.

Policy engine configuration

The policy engine ("processor": "policyengine") plugin is driven by a set of rules. These rules are specified in a YAML file which adopts the same syntax as the rules of the Falco [https://falco.org/docs/rules] project. A policy engine plugin specification may have the following attributes:

	policies (required for alert mode`): The path to the YAML rules specification file. More information on rules can be found in the Policies section.

	mode (optional): The mode of the policy engine. Allowed values are:

	alert (default): the policy engine generates rule-based alerts; alert is a blocking mode that drops all records that do not match any given rule. If no mode is specified, the policy engine runs in alert mode by default.

	enrich for enriching records with additional context from the rule. In contrast to alert, this is a non-blocking mode which applies tagging and action enrichments to matching records as defined in the policy file. Non-matching records are passed on “as is”.

	monitor (optional): Specifies if changes to the policy file(s) should be monitored and updated in the policy engine.

	none (default): no monitor is used.

	local: the processor will monitor for changes in the policies path and update its rule set if changes are detected.

	monitor.interval (optional): The interval in seconds for updating policies, if a monitor is used. (default: 30 seconds).

	concurrency (optional); The number of concurrent threads for record processing. (default: 5).

	actiondir (optional): The path of the directory containing the shared object files for user-defined action plugins. See the section on User-defined Actions for more information.

NOTE: Prior to release 0.4.0, the mode attribute accepted different values with different semantics. To preserve the behavior of older releases:

	For old alert behavior, use enrich mode.

	For old filter behavior, use enrich mode and a policy file with filter rules only.

	For old bypass behavior, use enrich and drop the policies key from the configuration.

Exporter configuration

An exporter ("processor": "exporter") plugin consists of two modules, an encoder for converting the data to a suitable format, and a transport module for sending the data to the target. Encoders target specific, i.e. for a particular export target a particular set of encoders may be used. In the exporter configuration the transport module is specified via the export parameter (required). The encoder is selected via the format parameter (optional). The default format is json.

The following table lists the currently supported exporter modules and the corresponding encoders. Additional encoders and transport modules can be implemented if need arises. If you plan to contribute or want to get involved in the discussion please join the SysFlow community.

Some of these combinations require additional configuration as described in the following sections. null is used for debugging the processor and doesn’t export any data.

File

If export is set to file, an additional parameter file.path allows the specification of the target file.

Syslog

If the export parameter is set to syslog, output to syslog is enabled and the following addtional parameters are used:

	syslog.proto (optional): The protocol used for communicating with the syslog server. Allows values are tcp, tls and udp. Default is tcp.

	syslog.tag (optional): The tag used for each Sysflow record in syslog. Default is SysFlow.

	syslog.source (optional): If set adds a hostname to the syslog header.

	syslog.host (optional): The hostname of the sysflow server. Default is localhost.

	syslog.port (optional): The port of the syslow server. Default is 514.

ElasticSearch

Export to ElasticSearch is enabled by setting the config parameter export to es. The only supported format for export to ElasticSearch is ecs.

Data export is done via bulk ingestion. The ingestion can be controlled by some additional parameters which are read when the es export target is selected. Required parameters specify the ES target, index and credentials. Optional parameters control some aspects of the behavior of the bulk ingestion and may have an effect on performance. You may need to adapt their valuesfor optimal performance in your environment.

	es.addresses (required): A comma-separated list of ES endpoints.

	es.index (required): The name of the ES index to ingest into.

	es.username (required): The ES username.

	es.password (required): The password for the specified ES user.

	buffer (optional) The bulk size as the number of records to be ingested at once. Default is 0 but value of 0 indicates record-by-record ingestion which may be highly inefficient.

	es.bulk.numWorkers (optional): The number of ingestion workers used in parallel. Default is 0 which means that the exporter uses as many workers as there are cores in the machine.

	es.bulk.flashBuffer (optional): The size in bytes of the flush buffer for ingestion. It should be large enough to hold one bulk (the number of records specified in buffer), otherwise the bulk is broken into smaller chunks. Default is 5e+6.

	es.bulk.flushTimeout (optional): The flush buffer time threshold. Valid values are golang duration strings. Default is 30s.

The Elastic exporter does not make any assumption on the existence or configuration of the index specified in es.index. If the index does not exist, Elastic will automatically create it and apply a default dynamic mapping. It may be beneficial to use an explicit mapping for the ECS data generated by the Elastic exporter. For convinience we provide an explicit mapping [https://github.com/sysflow-telemetry/sf-processor/blob/master/resources/mappings/ecs_mapping.json] for creating a new tailored index in Elastic. For more information refer to the Elastic Mapping [https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html] reference.

Environment variables

It is possible to override any of the custom attributes of a plugin using an environment variable. This is especially useful when operating the processor as a container, where you may have to deploy the processor to multiple nodes, and have attributes that change per node. If an environment variable is set, it overrides the setting inside the config file. The environment variables must follow the following structure:

	Environment variables must follow the naming schema <PLUGIN NAME>_<CONFIG ATTRIBUTE NAME>

	The plugin name inside the pipeline configuration file must be all lower case.

For example, to set the alert mode inside the policy engine, the following environment variable is set:

export POLICYENGINE_MODE=alert

To set the syslog values for the exporter:

export EXPORTER_TYPE=telemetry
export EXPORTER_SOURCE=${HOSTNAME}
export EXPORTER_EXPORT=syslog
export EXPORTER_HOST=192.168.2.10
export EXPORTER_PORT=514

If running as a docker container, environment variables can be passed with the docker run command:

docker run
-e EXPORTER_TYPE=telemetry \
-e EXPORTER_SOURCE=${HOSTNAME} \
-e EXPORTER_EXPORT=syslog \
-e EXPORTER_HOST=192.168.2.10 \
-e EXPORTER_PORT=514
...

Rate limiter configuration (experimental)

The flattener handler has a built-in time decay filter that can be enabled to reduce even rates in the processor. The filter uses a time-decay bloom filter based on a semantic hashing of records. This means that the filter should only forward one record matching a semantic hash per time decay period. The semantic hash takes into consideration process, flow and event attributes. To enable rate limiting, modify the sysflowreader processor as follows:

{
 "processor": "sysflowreader",
 "handler": "flattener",
 "in": "sysflow sysflowchan",
 "out": "flat flattenerchan",
 "filter.enabled": "on|off (default: off)",
 "filter.maxage": "time decay in minutes (default: 24H)"
}

Policy Language

The policy engine adopts and extends the Falco rules definition syntax. Before reading the rest of this section, please go through the Falco Rules [https://falco.org/docs/rules/] documentation to get familiar with rule, macro, and list syntax, all of which are supported in our policy engine. Policies are written in one or more yaml files, and stored in a directory specified in the pipeline configuration file under the policies attribute of the policy engine plugin.

Rules contain the following fields:

	rule: the name of the rule

	description: a textual description of the rule

	condition: a set of logical operations that can reference lists and macros, which when evaluating to true, can trigger record enrichment or alert creation (depending on the policy engine mode)

	action: a comma-separated list of actions to take place when the rule evaluates to true. For a particular rule, actions are evaluated in the order they are specified, i.e., an action can make use of the results provided by earlier actions. An action is just the name of an action function without any parameters. The current version only supports plugable user-defined actions. See here for a detailed description of the plugin interface and a sample action plugin.

	priority: label representing the severity of the alert can be: (1) low, medium, or high, or (2) emergency, alert, critical, error, warning, notice, informational, debug.

	tags (optional): set of labels appended to alert (default: empty).

	prefilter (optional): list of record types (sf.type) to whitelist before applying rule condition (default: empty).

	enabled (optional): indicates whether the rule is enabled (default: true).

NOTE: The syntax of the policy language changed slighly with the switch to release 0.4.0. For migrating policy files used with prior releases to release 0.4.0 or higher, simply remove all action: [tag] lines. As of release 0.4.0, tagging is done automatically. If a rule triggers all tags specified via the tags key will be appended to the record. The action key is reserved for specifying user-defined action plugins.</p>

Macros are named conditions and contain the following fields:

	macro: the name of the macro

	condition: a set of logical operations that can reference lists and macros, which evaluate to true or false

Lists are named collections and contain the following fields:

	list: the name of the list

	items: a collection of values or lists

Drop rules block records matching a condition and can be used for reducing the amount of records processed by the policy engine:

	drop: the name of the filter

	condition: a set of logical operations that can reference lists and macros, which evaluate to true or false

For example, the rule below specifies that matching records are process events (sf.type = PE), denoting EXEC operations (sf.opflags = EXEC) for which the process matches macro package_installers. Additionally, the global filter containers preemptively removes from the processing stream any records for processes not running in a container environment.

lists
- list: rpm_binaries
 items: [dnf, rpm, rpmkey, yum, '"75-system-updat"', rhsmcertd-worke, subscription-ma,
 repoquery, rpmkeys, rpmq, yum-cron, yum-config-mana, yum-debug-dump,
 abrt-action-sav, rpmdb_stat, microdnf, rhn_check, yumdb]

- list: deb_binaries
 items: [dpkg, dpkg-preconfigu, dpkg-reconfigur, dpkg-divert, apt, apt-get, aptitude,
 frontend, preinst, add-apt-reposit, apt-auto-remova, apt-key,
 apt-listchanges, unattended-upgr, apt-add-reposit]

- list: package_mgmt_binaries
 items: [rpm_binaries, deb_binaries, update-alternat, gem, pip, pip3, sane-utils.post, alternatives, chef-client]

macros
- macro: package_installers
 condition: sf.proc.name pmatch (package_mgmt_binaries)

global filters (blacklisting)
- filter: containers
 condition: sf.container.type = host

rule definitions
- rule: Package installer detected
 desc: Use of package installer detected
 condition: sf.opflags = EXEC and package_installers
 priority: medium
 tags: [actionable-offense, suspicious-process]
 prefilter: [PE] # record types for which this rule should be applied (whitelisting)
 enabled: true

Attribute names

The following table shows a detailed list of attribute names supported by the policy engine, as well as their
type, and comparative Falco attribute name. Our policy engine supports both SysFlow and Falco attribute naming convention to enable reuse of policies across the two frameworks.

	Attributes

	Description

	Values

	Falco Attribute

	sf.type

	Record type

	PE,PF,NF,FF,FE,KE

	N/A

	sf.opflags

	Operation flags

	Operation Flags List [https://sysflow.readthedocs.io/en/latest/spec.html#operation-flags]: remove OP_ prefix

	evt.type (remapped as falco event types)

	sf.ret

	Return code

	int

	evt.res

	sf.ts

	start timestamp(ns)

	int64

	evt.time

	sf.endts

	end timestamp(ns)

	int64

	N/A

	sf.proc.pid

	Process PID

	int64

	proc.pid

	sf.proc.tid

	Thread PID

	int64

	thread.tid

	sf.proc.uid

	Process user ID

	int

	user.uid

	sf.proc.user

	Process user name

	string

	user.name

	sf.proc.gid

	Process group ID

	int

	group.gid

	sf.proc.group

	Process group name

	string

	group.name

	sf.proc.apid

	Proc ancestors PIDs (qo)

	int64

	proc.apid

	sf.proc.aname

	Proc anctrs names (qo) (exclude path)

	string

	proc.aname

	sf.proc.exe

	Process command/filename (with path)

	string

	proc.exe

	sf.proc.args

	Process command arguments

	string

	proc.args

	sf.proc.name

	Process name (qo) (exclude path)

	string

	proc.name

	sf.proc.cmdline

	Process command line (qo)

	string

	proc.cmdline

	sf.proc.tty

	Process TTY status

	boolean

	proc.tty

	sf.proc.entry

	Process container entrypoint

	bool

	proc.vpid == 1

	sf.proc.createts

	Process creation timestamp (ns)

	int64

	N/A

	sf.pproc.pid

	Parent process ID

	int64

	proc.ppid

	sf.pproc.gid

	Parent process group ID

	int64

	N/A

	sf.pproc.uid

	Parent process user ID

	int64

	N/A

	sf.pproc.group

	Parent process group name

	string

	N/A

	sf.pproc.tty

	Parent process TTY status

	bool

	N/A

	sf.pproc.entry

	Parent process container entry

	bool

	N/A

	sf.pproc.user

	Parent process user name

	string

	N/A

	sf.pproc.exe

	Parent process command/filename

	string

	N/A

	sf.pproc.args

	Parent process command arguments

	string

	N/A

	sf.pproc.name

	Parent process name (qo) (no path)

	string

	proc.pname

	sf.pproc.cmdline

	Parent process command line (qo)

	string

	proc.pcmdline

	sf.pproc.createts

	Parent process creation timestamp

	int64

	N/A

	sf.file.fd

	File descriptor number

	int

	fd.num

	sf.file.path

	File path

	string

	fd.name

	sf.file.newpath

	New file path (used in some FileEvents)

	string

	N/A

	sf.file.name

	File name (qo)

	string

	fd.filename

	sf.file.directory

	File directory (qo)

	string

	fd.directory

	sf.file.type

	File type

	char ‘f’: file, 4: IPv4, 6: IPv6, ‘u’: unix socket, ‘p’: pipe, ‘e’: eventfd, ‘s’: signalfd, ‘l’: eventpoll, ‘i’: inotify, ‘o’: unknown.

	fd.typechar

	sf.file.is_open_write

	File open with write flag (qo)

	bool

	evt.is_open_write

	sf.file.is_open_read

	File open with read flag (qo)

	bool

	evt.is_open_read

	sf.file.openflags

	File open flags

	int

	evt.args

	sf.net.proto

	Network protocol

	int

	fd.l4proto

	sf.net.sport

	Source port

	int

	fd.sport

	sf.net.dport

	Destination port

	int

	fd.dport

	sf.net.port

	Src or Dst port (qo)

	int

	fd.port

	sf.net.sip

	Source IP

	int

	fd.sip

	sf.net.dip

	Destination IP

	int

	fd.dip

	sf.net.ip

	Src or dst IP (qo)

	int

	fd.ip

	sf.res

	File or network resource

	string

	fd.name

	sf.flow.rbytes

	Flow bytes read/received

	int64

	evt.res

	sf.flow.rops

	Flow operations read/received

	int64

	N/A

	sf.flow.wbytes

	Flow bytes written/sent

	int64

	evt.res

	sf.flow.wops

	Flow bytes written/sent

	int64

	N/A

	sf.container.id

	Container ID

	string

	container.id

	sf.container.name

	Container name

	string

	container.name

	sf.container.image.id

	Container image ID

	string

	container.image.id

	sf.container.image

	Container image name

	string

	container.image

	sf.container.type

	Container type

	CT_DOCKER, CT_LXC, CT_LIBVIRT_LXC, CT_MESOS, CT_RKT, CT_CUSTOM, CT_CRI, CT_CONTAINERD, CT_CRIO, CT_BPM

	container.type

	sf.container.privileged

	Container privilege status

	bool

	container.privileged

	sf.pod.ts

	Pod creation timestamp

	int

	N/A

	sf.pod.id

	Pod id

	string

	N/A

	sf.pod.name

	Pod name

	string

	N/A

	sf.pod.nodename

	Pod node name

	string

	N/A

	sf.pod.namespace

	Pod namespace

	string

	N/A

	sf.pod.restartcnt

	Pod restart count

	int

	N/A

	sf.pod.hostip

	Pod host IP addresses

	json

	N/A

	sf.pod.internalip

	Pod internal IP addresses

	json

	N/A

	sf.pod.services

	Pod services

	json

	N/A

	sf.ke.action

	Kubernetes event action

	K8S_COMPONENT_ADDED, K8S_COMPONENT_MODIFIED, K8S_COMPONENT_DELETED, K8S_COMPONENT_ERROR, K8S_COMPONENTNONEXISTENT, K8S_COMPONENT_UNKNOWN

	N/A

	sf.ke.kind

	Kubernetes event resource type

	K8S_NODES, K8S_NAMESPACES, K8S_PODS, K8S_REPLICATIONCONTROLLERS, K8S_SERVICES, K8S_EVENTS, K8S_REPLICASETS, K8S_DAEMONSETS, K8S_DEPLOYMENT, K8S_UNKNOWN

	N/A

	sf.ke.message

	Kubernetes event json message

	json

	N/A

	sf.node.id

	Node identifier

	string

	N/A

	sf.node.ip

	Node IP address

	string

	N/A

	sf.schema.version

	SysFlow schema version

	string

	N/A

	sf.version

	SysFlow JSON schema version

	int

	N/A

$ Jsonpath Expressions

Unlike attributes of the scalar types bool, int(64), and string, attributes of type json contain structured information in form of stringified json records. The policy language allows access to subfields inside such json records via GJSON jsonpath expressions. The jsonpath expression must be specified as a suffix to the attribute enclosed in square brackets. Examples of such terms are:

sf.pod.services[0.clusterip.0] - the first cluster IP address of the first service associated with a pod
sf.ke.message[items.0.namespace] - the namespace of the first item in a KE message attribute

See the GJSON path synax [https://github.com/tidwall/gjson#path-syntax] for more details. The result of applying a jsonpath expression to a json attribute is always of type string.

Operations

The policy language supports the following operations:

	Operation

	Description

	Example

	A and B

	Returns true if both statements are true

	sf.pproc.name=bash and sf.pproc.cmdline contains echo

	A or B

	Returns true if one of the statements are true

	sf.file.path = “/etc/passwd” or sf.file.path = “/etc/shadow”

	not A

	Returns true if the statement isn’t true

	not sf.pproc.exe = /usr/local/sbin/runc

	A = B

	Returns true if A exactly matches B. Note, if B is a list, A only has to exact match one element of the list. If B is a list, it must be explicit. It cannot be a variable. If B is a variable use in instead.

	sf.file.path = [“/etc/passwd”, “/etc/shadow”]

	A != B

	Returns true if A is not equal to B. Note, if B is a list, A only has to be not equal to one element of the list. If B is a list, it must be explicit. It cannot be a variable.

	sf.file.path != “/etc/passwd”

	A < B

	Returns true if A is less than B. Note, if B is a list, A only has to be less than one element in the list. If B is a list, it must be explicit. It cannot be a variable.

	sf.flow.wops < 1000

	A <= B

	Returns true if A is less than or equal to B. Note, if B is a list, A only has to be less than or equal to one element in the list. If B is a list, it must be explicit. It cannot be a variable.

	sf.flow.wops <= 1000

	A > B

	Returns true if A is greater than B. Note, if B is a list, A only has to be greater than one element in the list. If B is a list, it must be explicit. It cannot be a variable.

	sf.flow.wops > 1000

	A >= B

	Returns true if A is greater than or equal to B. Note, if B is a list, A only has to be greater than or equal to one element in the list. If B is a list, it must be explicit. It cannot be a variable.

	sf.flow.wops >= 1000

	A in B

	Returns true if value A is an exact match to one of the elements in list B. Note: B must be a list. Note: () can be used on B to merge multiple list objects into one list.

	sf.proc.exe in (bin_binaries, usr_bin_binaries)

	A startswith B

	Returns true if string A starts with string B

	sf.file.path startswith ‘/home’

	A endswith B

	Returns true if string A ends with string B

	sf.file.path endswith ‘.json’

	A contains B

	Returns true if string A contains string B

	sf.pproc.name=java and sf.pproc.cmdline contains org.apache.hadoop

	A icontains B

	Returns true if string A contains string B ignoring capitalization

	sf.pproc.name=java and sf.pproc.cmdline icontains org.apache.hadooP

	A pmatch B

	Returns true if string A partial matches one of the elements in B. Note: B must be a list. Note: () can be used on B to merge multiple list objects into one list.

	sf.proc.name pmatch (modify_passwd_binaries, verify_passwd_binaries, user_util_binaries)

	exists A

	Checks if A is not a zero value (i.e. 0 for int, “” for string)

	exists sf.file.path

See the resources policies directory in github [https://github.com/sysflow-telemetry/sf-processor/tree/master/resources/policies] for examples. Feel free to contribute new and interesting rules through a github pull request.

User-defined Actions

User-defined actions are implemented via the golang plugin mechanism. Check the documentation on Action Plugins [https://sysflow.readthedocs.io/en/latest/processor.html#action-plugins] for a custom action plugin example.

Plugins

In addition to its core plugins, the processor also supports custom plugins that can be dynamically loaded into the processor via a compiled golang shared library using the golang plugin package [https://golang.org/pkg/plugin/]. Custom plugins enable easy extension of the processor and the creation of custom pipelines tailored to specific use cases.

The processor supports four types of plugins:

	drivers: enable the ingestion of different telemetry sources into the processor pipeline.

	processors: enable the creation of custom data processing and analytic plugins to extend sf-processor pipelines.

	handlers: enable the creation of custom SysFlow record handling plugins.

	actions: enable the creation of custom action plugins to extend sf-processor’s policy engine.

Pre-requisites

	Go 1.17 (if building locally, without the plugin builder)

Processor Plugins

User-defined plugins can be plugged and extend the sf-processor pipeline. These are the most generic type of plugins, from which all built-in processor plugins are build. Check the core package for examples. We have built-in processor plugins for flattening the telemetry stream, implementing a policy engine, and creating event exporters.

Interface

Processor plugins (or just plugins) are implemented via the golang plugin mechanism. A plugin must implement the following interface, defined in the github.com/sysflow-telemetry/sf-apis/go/plugins package.

// SFProcessor defines the SysFlow processor interface.
type SFProcessor interface {
 Register(pc SFPluginCache)
 Init(conf map[string]interface{}) error
 Process(ch interface{}, wg *sync.WaitGroup)
 GetName() string
 SetOutChan(ch []interface{})
 Cleanup()
}

The Process function is the main function of the plugin.It’s where the “main loop” of the plugin should be implemented. It receives the input channel configured in the custom plugin’s block in the pipeline configuration. It also received the pepeline thread WaitGroup. Custom processing code should be implemented using this function. Init is called once, when the pipeline is loaded. Cleanup is called when the pipeline is terminated. SetOutChannel receives a slice with the output channels configured in the plugin’s block in the pipeline configuration.

When loading a pipeline, sf-processor performs a series of health checks before the pipeline is enabled. If these health checks fail, the processor terminates. To enable health checks on custom plugins, implement the Test function defined in the interface below. For an example, check core/exporter/exporter.go.

// SFTestableProcessor defines a testable SysFlow processor interface.
type SFTestableProcessor interface {
 SFProcessor
 Test() (bool, error)
}

Example

A dynamic plugin example is provided in github [https://github.com/sysflow-telemetry/sf-processor/tree/master/plugins/processors/example]. The core of the plugin is building an object that implements an SFProcessor interface [https://github.com/sysflow-telemetry/sf-apis/blob/master/go/plugins/processor.go]. Such an implementation looks as follows:

package main

import (
 "sync"

 "github.com/sysflow-telemetry/sf-apis/go/logger"
 "github.com/sysflow-telemetry/sf-apis/go/plugins"
 "github.com/sysflow-telemetry/sf-apis/go/sfgo"
 "github.com/sysflow-telemetry/sf-processor/core/flattener"
)

const (
 pluginName string = "example"
)

// Plugin exports a symbol for this plugin.
var Plugin Example

// Example defines an example plugin.
type Example struct{}

// NewExample creates a new plugin instance.
func NewExample() plugins.SFProcessor {
 return new(Example)
}

// GetName returns the plugin name.
func (s *Example) GetName() string {
 return pluginName
}

// Init initializes the plugin with a configuration map.
func (s *Example) Init(conf map[string]interface{}) error {
 return nil
}

// Register registers plugin to plugin cache.
func (s *Example) Register(pc plugins.SFPluginCache) {
 pc.AddProcessor(pluginName, NewExample)
}

// Process implements the main interface of the plugin.
func (s *Example) Process(ch interface{}, wg *sync.WaitGroup) {
 cha := ch.(*flattener.FlatChannel)
 record := cha.In
 logger.Trace.Println("Example channel capacity:", cap(record))
 defer wg.Done()
 logger.Trace.Println("Starting Example")
 for {
 fc, ok := <-record
 if !ok {
 logger.Trace.Println("Channel closed. Shutting down.")
 break
 }
 if fc.Ints[sfgo.SYSFLOW_IDX][sfgo.SF_REC_TYPE] == sfgo.PROC_EVT {
 logger.Info.Printf("Process Event: %s, %d", fc.Strs[sfgo.SYSFLOW_IDX][sfgo.PROC_EXE_STR], fc.Ints[sfgo.SYSFLOW_IDX][sfgo.EV_PROC_TID_INT])
 }
 }
 logger.Trace.Println("Exiting Example")
}

// SetOutChan sets the output channel of the plugin.
func (s *Example) SetOutChan(ch []interface{}) {}

// Cleanup tears down plugin resources.
func (s *Example) Cleanup() {}

// This function is not run when module is used as a plugin.
func main() {}

The custom plugin must implement the following interface:

	GetName() - returns a lowercase string representing the plugin’s label. This label is important, because it identifies the plugin in the pipeline.json file, enabling the processor to load the plugin. In the object above, this plugin is called example. Note that the label must be unique.

	Init(conf map[string]interface{}) error - used to initialize the plugin. The configuration map that is passed to the function stores all the configuration information defined in the plugin’s definition inside pipeline.json (more on this later).

	Register(pc plugins.SFPluginCache) - this registers the plugin with the plugin cache of the processor.

	pc.AddProcessor(pluginName, <plugin constructor function>) (required) - registers the plugin named example with the processor. You must define a constructor function using the convention New<PluginName> which is used to instantiate the plugin, and returns it as an SFProcessor interface - see NewExample for an example.

	pc.AddChannel(channelName, <output channel constructor function>) (optional) - if your plugin is using a custom output channel of objects (i.e., the channel used to pass output objects from this plugin to the next in the pipeline), it should be included in this plugin.

	The channelName should be a lowercase unique label defining the channel type.

	The constructor function should return a golang interface{} representing an object that as an In attribute of type chan <ObjectToBePassed>. We will call this object, a wrapped channel object going forward. For example, the channel object that passes sysflow objects is called SFChannel, and is defined here [https://github.com/sysflow-telemetry/sf-apis/blob/master/go/plugins/processor.go]

	For a complete example of defining an output channel, see NewFlattenerChan in the flattener [https://github.com/sysflow-telemetry/sf-processor/blob/master/core/flattener/flattener.go] as well as the Register function. The FlatChannel is defined here [https://github.com/sysflow-telemetry/sf-apis/blob/master/go/plugins/handler.go]

	Process(ch interface{}, wg *sync.WaitGroup) - this function is launched by the processor as a go thread and is where the main plugin processing occurs. It takes a wrapped channel object, which acts as the input data source to the plugin (i.e., this is the channel that is configured as the input channel to the plugin in the pipeline.json). It also takes a sync.WaitGroup object, which is used to signal to the processor when the plugin has completed running (see defer wg.Done() in code). The processor must loop on the input channel, and do its analysis on each input record. In this case, the example plugin is reading flat records and printing them to the screen.

	SetOutChan(ch []interface{}) - sets the wrapped channels that will serve as the output channels for the plugin. The output channels are instantiated by the processor, which is also in charge of stitching the plugins together. If the plugin is the last one in the chain, then this function can be left empty. See the SetOutputChan function in the flattener [https://github.com/sysflow-telemetry/sf-processor/blob/master/core/flattener/flattener.go] to see how an output channel is implemented.

	Cleanup() - Used to cleanup any resources. This function is called by the processor after the plugin Process function exits. One of the key items to close in the Cleanup function is the output channel using the golang close() function [https://gobyexample.com/closing-channels]. Closing the output channel enables the pipeline to be torn down gracefully and in sequence.

	main(){} - this main method is not used by the plugin or processor. It’s required by golang in order to be able to compile as a shared object.

To compile the example plugin, use the provided Makefile:

make -C plugins/processors/example

This will build the plugin and copy it into resources/plugins/.

To use the new plugin, use the configuration provided in github [https://github.com/sysflow-telemetry/sf-processor/tree/master/plugins/processors/example], which defines the following pipeline:

{
 "pipeline":[
 {
 "processor": "sysflowreader",
 "handler": "flattener",
 "in": "sysflow sysflowchan",
 "out": "flat flattenerchan"
 },
 {
 "processor": "example",
 "in": "flat flattenerchan"
 }
]
}

This pipeline contains two plugins:

	
	The builtin sysflowReader plugin with flattener handler, which takes raw sysflow objects, and flattens them
	into arrays of integers and strings for easier processing in certain plugins like the policy engine.

	The example plugin, which takes the flattened output from the sysflowreader plugin, and prints it the screen.

The key item to note is that the output channel (i.e., out) of sysflowreader matches the input channel (i.e., in) of the example plugin. This ensures that the plugins will be properly stitched together.

Build

The example plugin is a custom plugin that illustrates how to implement a minimal plugin that reads the records from the input channel and logs them to the standard output.

To run this example, in the root of sf-processor, build the processor and the example plugin. Note, this plugin’s shared object is generated in resources/plugins/example.so.

make build && make -C plugins/processors/example

Then, run:

cd driver && ./sfprocessor -log=info -config=../plugins/processors/example/pipeline.example.json ../resources/traces/tcp.sf

Plugin builder

To build the plugin for release, Go requires the code to be compiled with the exact package versions that the SysFlow processor was compiled with. The easiest way to achieve this is to use the pre-built plugin-builder Docker image in your build. This option also works for building plugins for deployment with the SysFlow binary packages.

Below is an example of how this can be achieved. Set $TAG to a SysFlow release (>=0.4.0), edge, or dev.

First, build the plugin:

docker run --rm \
 -v $(pwd)/plugins:/go/src/github.com/sysflow-telemetry/sf-processor/plugins \
 -v $(pwd)/resources:/go/src/github.com/sysflow-telemetry/sf-processor/resources \
 sysflowtelemetry/plugin-builder:$TAG \
 make -C /go/src/github.com/sysflow-telemetry/sf-processor/plugins/processors/example

To test it, run the pre-built processor with the example configuration and trace.

docker run --rm \
 -v $(pwd)/plugins:/usr/local/sysflow/plugins \
 -v $(pwd)/resources:/usr/local/sysflow/resources \
 -w /usr/local/sysflow/bin \
 --entrypoint=/usr/local/sysflow/bin/sfprocessor \
 sysflowtelemetry/sf-processor:$TAG \
 -log=info -config=../plugins/processors/example/pipeline.example.json ../resources/traces/tcp.sf

The output on the above pre-recorded trace should look like this:

[Health] 2022/02/21 12:55:19 pipeline.go:246: Health checks: passed
[Info] 2022/02/21 12:55:19 main.go:147: Successfully loaded pipeline configuration
[Info] 2022/02/21 12:55:19 pipeline.go:170: Starting the processing pipeline
[Info] 2022/02/21 12:55:19 example.go:75: Process Event: ./server, 13823
[Info] 2022/02/21 12:55:19 example.go:75: Process Event: ./client, 13824
[Info] 2022/02/21 12:55:19 example.go:75: Process Event: ./client, 13824
[Info] 2022/02/21 12:55:19 example.go:75: Process Event: ./server, 13823

Handler Plugins

User-defined handler modules can be plugged to the built-in SysFlow processor plugin to implement custom data processing and analytic pipelines.

Interface

Handlers are implemented via the golang plugin mechanism. A handler must implement the following interface, defined in the github.com/sysflow-telemetry/sf-apis/go/plugins package.

// SFHandler defines the SysFlow handler interface.
type SFHandler interface {
 RegisterChannel(pc SFPluginCache)
 RegisterHandler(hc SFHandlerCache)
 Init(conf map[string]interface{}) error
 IsEntityEnabled() bool
 HandleHeader(sf *CtxSysFlow, hdr *sfgo.SFHeader) error
 HandleContainer(sf *CtxSysFlow, cont *sfgo.Container) error
 HandleProcess(sf *CtxSysFlow, proc *sfgo.Process) error
 HandleFile(sf *CtxSysFlow, file *sfgo.File) error
 HandleNetFlow(sf *CtxSysFlow, nf *sfgo.NetworkFlow) error
 HandleNetEvt(sf *CtxSysFlow, ne *sfgo.NetworkEvent) error
 HandleFileFlow(sf *CtxSysFlow, ff *sfgo.FileFlow) error
 HandleFileEvt(sf *CtxSysFlow, fe *sfgo.FileEvent) error
 HandleProcFlow(sf *CtxSysFlow, pf *sfgo.ProcessFlow) error
 HandleProcEvt(sf *CtxSysFlow, pe *sfgo.ProcessEvent) error
 SetOutChan(ch []interface{})
 Cleanup()
}

Each Handle* function receives the current SysFlow record being processed along with its corresponding parsed record type. Custom processing code should be implemented using these functions.

Build

The printer handler is a pluggable handler that logs select SysFlow records to the standard output. This plugin doesn’t define any output channels, so it acts as a plugin sink (last plugin in a pipeline).

To run this example, in the root of sf-processor, build the processor and the handler plugin. Note, this plugin’s shared object is generated in resources/handlers/printer.so.

make build && make -C plugins/handlers/printer

Then, run:

cd driver && ./sfprocessor -log=info -config=../plugins/handlers/printer/pipeline.printer.json ../resources/traces/tcp.sf

Plugin builder

To build the plugin for release, Go requires the code to be compiled with the exact package versions that the SysFlow processor was compiled with. The easiest way to achieve this is to use the pre-built plugin-builder Docker image in your build. This option also works for building plugins for deployment with the SysFlow binary packages.

Below is an example of how this can be achieved. Set $TAG to a SysFlow release (>=0.4.0), edge, or dev.

First, build the plugin:

docker run --rm \
 -v $(pwd)/plugins:/go/src/github.com/sysflow-telemetry/sf-processor/plugins \
 -v $(pwd)/resources:/go/src/github.com/sysflow-telemetry/sf-processor/resources \
 sysflowtelemetry/plugin-builder:$TAG \
 make -C /go/src/github.com/sysflow-telemetry/sf-processor/plugins/handlers/printer

To test it, run the pre-built processor with the example configuration and trace.

docker run --rm \
 -v $(pwd)/plugins:/usr/local/sysflow/plugins \
 -v $(pwd)/resources:/usr/local/sysflow/resources \
 -w /usr/local/sysflow/bin \
 --entrypoint=/usr/local/sysflow/bin/sfprocessor \
 sysflowtelemetry/sf-processor:$TAG \
 -log=info -config=../plugins/handlers/printer/pipeline.printer.json ../resources/traces/tcp.sf

The output on the above pre-recorded trace should look like this:

[Info] 2022/02/21 15:39:58 printer.go:118: ProcEvt ./server, 13823
[Info] 2022/02/21 15:39:58 printer.go:100: FileFlow ./server, 3
[Info] 2022/02/21 15:39:58 printer.go:100: FileFlow ./server, 3
[Info] 2022/02/21 15:39:58 printer.go:118: ProcEvt ./client, 13824
[Info] 2022/02/21 15:39:58 printer.go:100: FileFlow ./client, 3
[Info] 2022/02/21 15:39:58 printer.go:100: FileFlow ./client, 3
[Info] 2022/02/21 15:39:58 printer.go:94: NetworkFlow ./client, 8080
[Info] 2022/02/21 15:39:58 printer.go:118: ProcEvt ./client, 13824
[Info] 2022/02/21 15:39:58 printer.go:94: NetworkFlow ./server, 8080
[Info] 2022/02/21 15:39:58 printer.go:118: ProcEvt ./server, 13823

Action Plugins

User-defined actions can be plugged to SysFlow’s Policy Engine rule declarations to perform additional processing on matched records.

Interface

Actions are implemented via the golang plugin mechanism. An action must implement the following interface, defined in the github.com/sysflow-telemetry/sf-processor/core/policyengine/engine package.

// Prototype of an action function
type ActionFunc func(r *Record) error

// Action interface for user-defined actions
type Action interface {
 GetName() string
 GetFunc() ActionFunc
}

Actions have a name and an action function. Within a single policy engine instance, action names must be unique. User-defined actions cannot re-declare built-in actions. Reusing names of user-defined actions overwrites previously registered actions.

The action function receives the current record as an argument and thus has access to all record attributes. The action result can be stored in the record context via the context modifier methods.

Build

The now action is a pluggable action that creates a tag containing the current time in nanosecond precision.

First, in the root of sf-processor, build the processor and the action plugin. Note, this plugin’s shared object is generated in resources/actions/now.so.

make build && make -C plugins/actions/example

Then, run:

cd driver && ./sfprocessor -log=quiet -config=../plugins/actions/example/pipeline.actions.json ../resources/traces/tcp.sf

Plugin builder

To build the plugin for release, Go requires the code to be compiled with the exact package versions that the SysFlow processor was compiled with. The easiest way to achieve this is to use the pre-built plugin-builder Docker image in your build. This option also works for building plugins for deployment with the SysFlow binary packages.

Below is an example of how this can be achieved. Set $TAG to a SysFlow release (>=0.4.0), edge, or dev.

First, build the plugin:

docker run --rm \
 -v $(pwd)/plugins:/go/src/github.com/sysflow-telemetry/sf-processor/plugins \
 -v $(pwd)/resources:/go/src/github.com/sysflow-telemetry/sf-processor/resources \
 sysflowtelemetry/plugin-builder:$TAG \
 make -C /go/src/github.com/sysflow-telemetry/sf-processor/plugins/actions/example

To test it, run the pre-built processor with the example configuration and trace.

docker run --rm \
 -v $(pwd)/plugins:/usr/local/sysflow/plugins \
 -v $(pwd)/resources:/usr/local/sysflow/resources \
 -w /usr/local/sysflow/bin \
 --entrypoint=/usr/local/sysflow/bin/sfprocessor \
 sysflowtelemetry/sf-processor:$TAG \
 -log=quiet -config=../plugins/actions/example/pipeline.actions.json ../resources/traces/tcp.sf

In the output, observe that all records matching the policy speficied in pipeline.actions.json are tagged by action now with the tag now_in_nanos. For example:

{
 "version": 4,
 "endts": 0,
 "opflags": [
 "EXEC"
],
 ...
 "policies": [
 {
 "id": "Action example",
 "desc": "user-defined action example",
 "priority": 0
 }
],
 "tags": [
 "now_in_nanos:1645409122055957900"
]
}

Docker usage

Documentation and scripts for how to deploy the SysFlow Processor with docker compose can be found in here [https://sysflow.readthedocs.io/en/latest/docker.html].

Processor environment

As mentioned in a previous section, all custom plugin attributes can be set using the following: <PLUGIN NAME>_<CONFIG ATTRIBUTE NAME> format. Note that the docker compose file sets several attributes including EXPORTER_TYPE, EXPORTER_HOST and EXPORTER_PORT.

The following are the default locations of the pipeline configuration and plugins directory:

	pipeline.json: /usr/local/sysflow/conf/pipeline.json

	drivers dir: /usr/local/sysflow/resources/drivers

	plugins dir: /usr/local/sysflow/resources/plugins

	handler dir: /usr/local/sysflow/resources/handlers

	actions dir: /usr/local/sysflow/resources/actions

The default configuration can be changed by setting up a virtual mounts mapping the host directories/files into the container using the volumes section of the sf-processor in the docker-compose.yaml.

sf-processor:
 container_name: sf-processor
 image: sysflowtelemetry/sf-processor:latest
 privileged: true
 volumes:
 ...
 - ./path/to/my.pipeline.json:/usr/local/sysflow/conf/pipeline.json

The policy location can be overwritten by setting the POLICYENGINE_POLICIES environment variable, which can point to a policy file or a directory containing policy files (must have yaml extension).

The docker container uses a default filter.yaml policy that outputs SysFlow records in json. You can use your own policy files from the host by mounting your policy directory into the container as follows, in which the custom pipeline points to the mounted policies.

sf-processor:
 container_name: sf-processor
 image: sysflowtelemetry/sf-processor:latest
 privileged: true
 volumes:
 ...
 - ./path/to/my.pipeline.json:/usr/local/sysflow/conf/pipeline.json
 - ./path/to/policies/:/usr/local/sysflow/resources/policies/

 SysFlow Exporter (sf-exporter repo)

SysFlow Exporter (sf-exporter repo)

SysFlow exporter to export SysFlow traces to S3-compliant object stores.

Note: For remote syslogging and other export formats and connectors, check the SysFlow processor [https://github.com/sysflow-telemetry/sf-processor] project.

Build

This document describes how to build and run the application both inside a docker container and on a Linux host. Building and running the application inside a docker container
is the easiest way to start. For convenience, skip the build step and pull pre-built images directly from Docker Hub.

To build the project, first clone the source code, with submodules:

git clone --recursive git@github.com:sysflow-telemetry/sf-exporter.git

To checkout submodules on an already cloned repo:

git submodule update --init --recursive

To build the docker image for the exporter locally, run:

docker build -t sf-exporter .

Docker usage

The easiest way to run the SysFlow exporter is from a Docker container, with host mount for the trace files to export. The following command shows how to run sf-exporter with trace files located in /mnt/data on the host.

docker run -d --rm --name sf-exporter \
 -e S3_ENDPOINT=<ip_address> \
 -e S3_BUCKET=<bucket_name> \
 -e S3_ACCESS_KEY=<access_key> \
 -e S3_SECRET_KEY=<secret_key> \
 -e NODE_IP=$HOSTNAME \
 -e INTERVAL=150 \
 -v /mnt/data:/mnt/data \
 sysflowtelemetry/sf-exporter

It’s also possible to read S3’s keys as docker secrets s3_access_key and s3_secret_key. Instructions for docker compose and helm deployments are available in here [https://sysflow.readthedocs.io/en/latest/deploy.html].

docker service create --name sf-exporter \
 -e NODE_IP=10.1.0.159 \
 -e INTERVAL=15 \
 --secret s3_access_key \
 --secret s3_secret_key \
 --mount type=bind,source=/mnt/data,destination=/mnt/data \
 sf-exporter:latest

The exporter is usually executed as a pod or docker-compose service together with the SysFlow collector. The exporter automatically removes exported files from the local filesystem it monitors. See the SysFlow deployments [https://github.com/sysflow-telemetry/sf-deployments] packages for more information.

Development

To build the exporter locally, run:

cd src & pip3 install -r requirements.txt
cd modules/sysflow/py3 & sudo python3 setup.py install

To run the exporter from the command line:

./exporter.py -h
usage: exporter.py [-h] [--exporttype {s3,local}] [--s3endpoint S3ENDPOINT]
 [--s3port S3PORT] [--s3accesskey S3ACCESSKEY] [--s3secretkey S3SECRETKEY]
 [--s3bucket S3BUCKET] [--s3location S3LOCATION] [--s3prefix S3PREFIX]
 [--secure [SECURE]] [--scaninterval SCANINTERVAL] [--timeout TIMEOUT]
 [--agemin AGEMIN] [--log LOG] [--dir DIR] [--mode MODE] [--todir TODIR]
 [--nodename NODENAME] [--nodeip NODEIP] [--podname PODNAME] [--podip PODIP]
 [--podservice PODSERVICE] [--podns PODNS] [--poduuid PODUUID] [--clusterid CLUSTERID]

sf-exporter: watches and uploads monitoring files to object store.

optional arguments:
 -h, --help show this help message and exit
 --exporttype {s3,local}
 export type
 --s3endpoint S3ENDPOINT
 s3 server address
 --s3port S3PORT s3 server port
 --s3accesskey S3ACCESSKEY
 s3 access key
 --s3secretkey S3SECRETKEY
 s3 secret key
 --s3bucket S3BUCKET target data bucket(s) comma delimited. number must match data dirs
 --s3location S3LOCATION
 target data bucket location
 --s3prefix S3PREFIX s3 bucket prefix
 --secure [SECURE] enables SSL connection
 --scaninterval SCANINTERVAL
 interval between scans
 --timeout TIMEOUT connection timeout
 --agemin AGEMIN age in minutes to keep in case of repeated timeouts
 --log LOG logging level for exporter: DEBUG, INFO, WARNING, ERROR, CRITICAL
 --dir DIR data directory(s) comma delimited. number must match s3buckets
 --mode MODE copy modes (move-del, cont-update, cont-update-recur) comma delimited. number must match buckets, data dirs
 --todir TODIR data directory
 --nodename NODENAME exporter's node name
 --nodeip NODEIP exporter's node IP
 --podname PODNAME exporter's pod name
 --podip PODIP exporter's pod IP
 --podservice PODSERVICE
 exporter's pod service
 --podns PODNS exporter's pod namespace
 --poduuid PODUUID exporter's: pod UUID
 --clusterid CLUSTERID
 exporter's: cluster ID

 SysFlow APIs and Utilities (sf-apis repo)

SysFlow APIs and Utilities (sf-apis repo)

	SysFlow APIs and Utilities
	Cloning source

	Avro IDL and schema files

	SysFlow Avro C++

	SysFlow Avro Python 3

	SysFlow utilities

	SysFlow Python API Reference
	SysFlow Reader API

	SysFlow Formatter API

	SysFlow Object Types

	SysFlow Utils API

	SysFlow Graphlet API

	SysFlow QL API

 SysFlow APIs and Utilities

SysFlow APIs and Utilities

SysFlow uses Apache Avro [https://avro.apache.org/] serialization to create compact records that can be processed by a wide variety of programming languages, and big data analytics platforms such as Apache Spark [https://spark.apache.org/]. Avro enables a user to generate programming stubs for serializing and deserializing data, using either Apache Avro IDL [https://avro.apache.org/docs/1.9.1/idl.html] or Apache schema files [https://avro.apache.org/docs/1.9.1/spec.html].

Cloning source

The sf-apis project has been tested primarily on Ubuntu 16.04 and 18.04. The project will be tested on other flavors of UNIX in the future. This document describes how to build and run the application both on a linux host.

To build the project, first pull down the source code:

git clone git@github.com:sysflow-telemetry/sf-apis.git

Avro IDL and schema files

The Avro IDL files for SysFlow are available in the repository under sf-apis/avro/avdl, while the schema files are available under sf-apis/avro/avsc. The avrogen tool can be used to generate classes using the schema. See sf-apis/avro/generateCClasses.sh for an example of how to generate C++ headers from apache schema files.

SysFlow Avro C++

SysFlow C++ SysFlow objects and encoders/decoders are all available in sf-apis/c++/sysflow/sysflow.hh. sf-collector/src/sysreader.cpp provides a good example of how to read and process different SysFlow avro objects in C++. Note that one must install Apache Avro 1.9.1 cpp [https://avro.apache.org/releases.html] to run an application that includes sysflow.hh. The library file -lavrocpp must also be linked during compilation.

SysFlow Avro Python 3

SysFlow Python 3 APIs are generated with the avro-gen Python package. These classes are available in sf-apis/py3.

In order to install the SysFlow Python package:

cd sf-apis/py3
sudo python3 setup.py install

Please see the SysFlow Python API reference documents for more information on the modules and objects in the library.

SysFlow utilities

sysprint

sysprint is a tool written using the SysFlow Python API that will print out SysFlow traces from a file into several different formats including JSON, CSV, and tabular pretty print form. Not only will sysprint help you interact with SysFlow, it is also a good example for how to write new analytics tools using the SysFlow API.

usage: sysprint [-h] [-i {local,s3}] [-o {str,flatjson,json,csv}] [-w FILE]
 [-c FIELDS] [-f FILTER] [-l] [-e S3ENDPOINT] [-p S3PORT]
 [-a S3ACCESSKEY] [-s S3SECRETKEY] [-k] [-A]
 [--secure [SECURE]]
 path [path ...]

sysprint: a human-readable printer and format converter for Sysflow captures.

positional arguments:
 path list of paths or bucket names from where to read trace
 files

optional arguments:
 -h, --help show this help message and exit
 -i {local,s3}, --input {local,s3}
 input type
 -o {str,flatjson,json,csv}, --output {str,flatjson,json,csv}
 output format
 -w FILE, --file FILE output file path
 -c FIELDS, --fields FIELDS
 comma-separated list of sysflow fields to be printed
 -f FILTER, --filter FILTER
 filter expression
 -l, --list list available record attributes
 -e S3ENDPOINT, --s3endpoint S3ENDPOINT
 s3 server address from where to read sysflows
 -p S3PORT, --s3port S3PORT
 s3 server port
 -a S3ACCESSKEY, --s3accesskey S3ACCESSKEY
 s3 access key
 -s S3SECRETKEY, --s3secretkey S3SECRETKEY
 s3 secret key
 -k, --k8s add pod related fields to output
 -A, --allfields add all available fields to output
 --secure [SECURE] indicates if SSL connection

 SysFlow Python API Reference

SysFlow Python API Reference

SysFlow Reader API

	
class sysflow.reader.FlattenedSFReader(filename, retEntities=False)

	FlattenedSFReader

This class loads a raw sysflow file, and links all Entities (header, process, container, files) with
the current flow or event in the file. As a result, the user does not have to manage this information.
This class supports the python iterator design pattern.
Example Usage:

reader = FlattenedSFReader(trace)
head = 20 # max number of records to print
for i, (objtype, header, cont, pproc, proc, files, evt, flow) in enumerate(reader):
 exe = proc.exe
 pid = proc.oid.hpid if proc else ''
 evflow = evt or flow
 tid = evflow.tid if evflow else ''
 opFlags = utils.getOpFlagsStr(evflow.opFlags) if evflow else ''
 sTime = utils.getTimeStr(evflow.ts) if evflow else ''
 eTime = utils.getTimeStr(evflow.endTs) if flow else ''
 ret = evflow.ret if evt else ''
 res1 = ''
 if objtype == ObjectTypes.FILE_FLOW or objtype == ObjectTypes.FILE_EVT:
 res1 = files[0].path
 elif objtype == ObjectTypes.NET_FLOW:
 res1 = utils.getNetFlowStr(flow)
 numBReads = evflow.numRRecvBytes if flow else ''
 numBWrites = evflow.numWSendBytes if flow else ''
 res2 = files[1].path if files and files[1] else ''
 cont = cont.id if cont else ''
 print("|{0:30}|{1:9}|{2:26}|{3:26}|{4:30}|{5:8}|{6:8}|".format(exe, opFlags, sTime, eTime, res1, numBReads, numBWrites))
 if i == head:
 break

	Parameters:

	
	filename (str) – the name of the sysflow file to be read.

	retEntities (bool) – If True, the reader will return entity objects by themselves as they are seen in the sysflow file.
In this case, all other objects will be set to None

	Iterator
	Reader returns a tuple of objects in the following order:

objtype (sysflow.objtypes.ObjectTypes) The type of entity or flow returned.

header (sysflow.entity.SFHeader) The header entity of the file.

pod (sysflow.entity.Pod) The pod associated with the flow/evt, or None if no pod.

cont (sysflow.entity.Container) The container associated with the flow/evt, or None if no container.

pproc (sysflow.entity.Process) The parent process associated with the flow/evt.

proc (sysflow.entity.Process) The process associated with the flow/evt.

files (tuple of sysflow.entity.File) Any files associated with the flow/evt.

evt (sysflow.event.{ProcessEvent,FileEvent}) If the record is an event, it will be returned here. Otherwise this variable will be None. objtype will indicate the type of event.

flow (sysflow.flow.{NetworkFlow,FileFlow}) If the record is a flow, it will be returned here. Otherwise this variable will be None. objtype will indicate the type of flow.

	
getProcess(oid)

	Returns a Process Object given a process object id.

	Parameters:

	oid (sysflow.type.OID) – the object id of the Process Object requested

	Return type:

	sysflow.entity.Process

	Returns:

	the desired process object or None if no process object is available.

	
class sysflow.reader.NestedNamespace(**kwargs)

	

	
class sysflow.reader.SFReader(filename)

	SFReader

This class loads a raw sysflow file, and returns each entity/flow one by one.
It is the user’s responsibility to link the related objects together through the OID.
This class supports the python iterator design pattern.
Example Usage:

reader = SFReader("./sysflowfile.sf")
for name, sf in reader:
 if name == "sysflow.entity.SFHeader":
 //do something with the header object
 elif name == "sysflow.entity.Container":
 //do something with the container object
 elif name == "sysflow.entity.Process":
 //do something with the Process object

	Parameters:

	filename (str) – the name of the sysflow file to be read.

SysFlow Formatter API

	
class sysflow.formatter.SFFormatter(reader, defs=[])

	SFFormatter

This class takes a FlattenedSFReader, and exports SysFlow as either JSON, CSV or Pretty Print .
Example Usage:

reader = FlattenedSFReader(trace, False)
formatter = SFFormatter(reader)
fields=args.fields.split(',') if args.fields else None
if args.output == 'json':
 if args.file is not None:
 formatter.toJsonFile(args.file, fields=fields)
 else:
 formatter.toJsonStdOut(fields=fields)
elif args.output == 'csv' and args.file is not None:
 formatter.toCsvFile(args.file, fields=fields)
elif args.output == 'str':
 formatter.toStdOut(fields=fields)

	Parameters:

	
	reader (sysflow.reader.FlattenedSFReader) – A reader representing the sysflow file being read.

	defs (list) – A list of paths to filter definitions.

	
applyFuncJson(func, fields=None, expr=None)

	Enables a delegate function to be applied to each JSON record read.

	Parameters:

	
	func (function) – delegate function of the form func(str)

	fields (list) – a list of the SysFlow fields to be exported in JSON. See
formatter.py for a list of fields

	expr (str) – a sfql filter expression

	
enableAllFields()

	Enables all available fields to be added to the output by default.

	
enableK8sEventFields()

	Enables fields related to k8s events be added to the output by default.

	
enablePodFields()

	Enables fields related to pods to be added to the output by default.

	
getFields()

	Returns a list with available SysFlow fields and their descriptions.

	
toCsvFile(path, fields=None, header=True, expr=None)

	Writes SysFlow to CSV file.

	Parameters:

	
	path (str) – the full path of the output file.

	fields (list) – a list of the SysFlow fields to be exported in the JSON. See
formatter.py for a list of fields

	expr (str) – a sfql filter expression

	
toDataframe(fields=None, expr=None)

	Enables a delegate function to be applied to each JSON record read.

	Parameters:

	
	func (function) – delegate function of the form func(str)

	fields (list) – a list of the SysFlow fields to be exported in the JSON. See
formatter.py for a list of fields

	expr (str) – a sfql filter expression

	
toJson(fields=None, flat=False, expr=None)

	Writes SysFlow as JSON object.

	Parameters:

	
	fields (list) – a list of the SysFlow fields to be exported in JSON. See
formatter.py for a list of fields

	expr (str) – a sfql filter expression

	Flat:

	specifies if JSON output should be flattened

	
toJsonFile(path, fields=None, flat=False, expr=None)

	Writes SysFlow to JSON file.

	Parameters:

	
	path (str) – the full path of the output file.

	fields (list) – a list of the SysFlow fields to be exported in JSON. See
formatter.py for a list of fields

	expr (str) – a sfql filter expression

	Flat:

	specifies if JSON output should be flattened

	
toJsonStdOut(fields=None, flat=False, expr=None)

	Writes SysFlow as JSON to stdout.

	Parameters:

	
	fields (list) – a list of the SysFlow fields to be exported in JSON. See
formatter.py for a list of fields

	expr (str) – a sfql filter expression

	Flat:

	specifies if JSON output should be flattened

	
toStdOut(fields=['ts_uts', 'type', 'proc.exe', 'proc.args', 'pproc.pid', 'proc.pid', 'proc.tid', 'opflags', 'res', 'flow.rbytes', 'flow.wbytes', 'container.id'], pretty_headers=True, showindex=True, expr=None)

	Writes SysFlow as a tabular pretty print form to stdout.

	Parameters:

	
	fields (list) – a list of the SysFlow fields to be exported in the JSON. See
formatter.py for a list of fields

	pretty_headers (bool) – print table headers in pretty format.

	showindex (bool) – show record number.

	expr (str) – a sfql filter expression

SysFlow Object Types

	
class sysflow.objtypes.ObjectTypes(value, names=None, *values, module=None, qualname=None, type=None, start=1, boundary=None)

	ObjectTypes

	Enumeration representing each of the object types:
	HEADER = 0,
CONT = 1,
PROC = 2,
FILE = 3,
PROC_EVT = 4,
NET_FLOW = 5,
FILE_FLOW = 6,
FILE_EVT = 7
PROC_FLOW = 8
POD = 9
K8S_EVT = 10

SysFlow Utils API

	
sysflow.utils.getEnvStr(env)

	Converts an array of environment variables into a string representation.

	Parameters:

	env (str[]) – An array of environment variables.

	Return type:

	str

	Returns:

	A concatenated string representation of the environment variables array.

	
sysflow.utils.getIpIntStr(ipInt)

	Converts an IP address in host order integer to a string representation.

	Parameters:

	ipInt – an IP address integer

	Return type:

	str

	Returns:

	A string representation of the IP address

	
sysflow.utils.getNetFlowStr(nf)

	Converts a NetworkFlow into a string representation.

	Parameters:

	nf (sysflow.schema_classes.SchemaClasses.sysflow.flow.NetworkFlowClass) – a NetworkFlow object.

	Return type:

	str

	Returns:

	A string representation of the NetworkFlow in form (sip:sport-dip:dport).

	
sysflow.utils.getOpFlags(opFlags)

	Converts a sysflow operations flag bitmap into a set representation.

	Parameters:

	opflag (int) – An operations bitmap from a flow or event.

	Return type:

	set

	Returns:

	A set representation of the operations bitmap.

	
sysflow.utils.getOpFlagsStr(opFlags)

	Converts a sysflow operations flag bitmap into a string representation.

	Parameters:

	opflag (int) – An operations bitmap from a flow or event.

	Return type:

	str

	Returns:

	A string representation of the operations bitmap.

	
sysflow.utils.getOpStr(opFlags)

	Converts a sysflow operations into a string representation.

	Parameters:

	opflag (int) – An operations bitmap from a flow or event.

	Return type:

	str

	Returns:

	A string representation of the operations bitmap.

	
sysflow.utils.getOpenFlags(openFlags)

	Converts a sysflow open modes flag bitmap into a set representation.

	Parameters:

	opflag – An open modes bitmap from a flow or event.

	Return type:

	set

	Returns:

	A set representation of the open modes bitmap.

	
sysflow.utils.getTimeStr(ts)

	Converts a nanosecond ts into a string representation.

	Parameters:

	ts (int) – A nanosecond epoch.

	Return type:

	str

	Returns:

	A string representation of the timestamp in %m/%d/%YT%H:%M:%S.%f format.

	
sysflow.utils.getTimeStrIso8601(ts)

	Converts a nanosecond ts into a string representation in UTC time zone.

	Parameters:

	ts (int) – A nanosecond epoch.

	Return type:

	str

	Returns:

	A string representation of the timestamp in ISO 8601 format.

SysFlow Graphlet API

	
class sysflow.graphlet.Edge(n1, n2, label)

	Edge

This class represents a graph edge, and acts as a super class for specific edges.

	Parameters:

	edge (sysflow.Edge) – an abstract edge object.

	
class sysflow.graphlet.EvtEdge(n1, n2, label)

	EvtEdge

This class represents a graph event edge. It is used
for sysflow event objects and subclasses Edge.

	Parameters:

	evtedge (sysflow.EvtEdge) – an edge object representing a sysflow evt.

	
class sysflow.graphlet.FileFlowNode(oid, exe, args)

	FileFlowNode

This class represents a fileflow node.

	Parameters:

	ff (sysflow.FileFlow) – a fileflow node object.

	
class sysflow.graphlet.FlowEdge(n1, n2, label)

	FlowEdge

This class represents a graph flow edge. It is used
for sysflow flow objects and subclasses Edge.

	Parameters:

	flowedge (sysflow.FlowEdge) – an edge object representing a sysflow flow.

	
class sysflow.graphlet.Graphlet(path, expr=None, defs=[])

	Graphlet

This class takes a path pointing to a sysflow trace or a directory containing sysflow traces.

Example Usage:

basic usage
g1 = Graphlet('data/')
g1.view()

filtering and enrichment with policies
ioc1 = 'proc.exe = /usr/bin/scp'
g1 = Graphlet('data/', ioc1, ['policies/ttps.yaml'])
g1.view()

	Parameters:

	graphlet (sysflow.Graphlet) – A compact provenance graph representation based on sysflow traces.

	
associatedMitigations(oid=None)

	Returns a dataframe containing the set of MITRE mitigations associated with TTPs annotated in the graph.

	Parameters:

	oid (object ID string) – a node ID filter.

	
compare(other, withoid=False, peek=True, peeksize=3, flows=True, ttps=False)

	Compares the graph to another graph (using a simple graph difference), returning a graph slice.

	Parameters:

	
	withoid (boolean) – indicates whether to show the node ID.

	peek (boolean) – indicates whether to show details about the records associated with the nodes.

	peeksize (integer) – the number of node records to show.

	flows (boolean) – indicates whether to show flow nodes.

	ttps (boolean) – indicates whether to show tags.

	
countermeasures(oid=None)

	Returns a dataframe containing the set of MITRE d3fend defenses associated with TTPs annotated in the graph.

	Parameters:

	oid (object ID string) – a node ID filter.

	
data(oid=None)

	Returns a dataframe containing the underlying data (sysflow records) of the graph.

	Parameters:

	oid (object ID string) – a node ID filter.

	
df(oid=None)

	Returns a dataframe containing a summary of the graph node IDs and process metadata associated with them.

	Parameters:

	oid (object ID string) – a node ID filter.

	
mitigations(oid=None, details=False)

	Returns a dataframe containing the summary set of MITRE mitigations associated with TTPs annotated in the graph.

	Parameters:

	oid (object ID string) – a node ID filter.

	
tags(oid=None)

	Returns a dataframe containing the set of (enrichment) tags in the graph.

	Parameters:

	oid (object ID string) – a node ID filter.

	
ttps(oid=None, details=False)

	Returns a dataframe containing the set of MITRE TTP tags in the graph (e.g., as enriched by the ttps.yaml policy provided with the SysFlow processor).

	Parameters:

	
	oid (object ID string) – a node ID filter.

	details (boolean) – indicates whether to include complete TTP metadata in the dataframe.

	
view(withoid=False, peek=True, peeksize=3, flows=True, ttps=False)

	Visualizes the graph in dot format.

	Parameters:

	
	withoid (boolean) – indicates whether to show the node ID.

	peek (boolean) – indicates whether to show details about the records associated with the nodes.

	peeksize (integer) – the number of underlying sysflow records to show in the node.

	flows (boolean) – indicates whether to show flow nodes.

	ttps (boolean) – indicates whether to show tags.

	
class sysflow.graphlet.NetFlowNode(oid, exe, args)

	NetFlowNode

This class represents a netflow node.

	Parameters:

	nf (sysflow.NetFlow) – a netflow node object.

	
class sysflow.graphlet.Node(oid)

	Node

This class represents a graph node, and acts as a super class for specific nodes.

	Parameters:

	node (sysflow.Node) – an abstract node object.

	
class sysflow.graphlet.ProcessNode(oid, exe, args, uid, user, gid, group, tty)

	ProcessNode

This class represents a process node.

	Parameters:

	proc (sysflow.ProcessNode) – a process node object.

SysFlow QL API

	
class sysflow.sfql.SfqlInterpreter(query: str = None, paths: list = [], inputs: list = [])

	SfqlInterpreter

This class takes a sfql expression (and optionally a file containining a library of
lists and macros) and produces a predicate expression that can be matched against
sysflow records.
Example Usage:

using 'filter' to filter the input stream
reader = FlattenedSFReader('trace.sf')
interpreter = SfqlInterpreter()
query = '- sfql: type = FF'
for r in interpreter.filter(reader, query):
 print(r)

	Parameters:

	interpreter (sysflow.SfqlInterpreter) – An interpreter for executing sfql expressions.

	
compile(query: str = None, paths: list = [], inputs: list = [])

	Compile sfql into a predicate expression to match sysflow records.

	Parameters:

	
	query (str) – sfql query.

	paths (list) – a list of paths to file containing sfql list and macro definitions.

	inputs (list) – a list of input streams from where to read sfql list and macro definitions.

	
enrich(t: T)

	Process flattened sysflow record t based on policies.

	
evaluate(t: T, query: str = None, paths: list = []) → bool

	Evaluate sfql expression against flattened sysflow record t.

	Parameters:

	
	reader – individual sysflow record

	query (str) – sfql query.

	paths (list) – a list of paths to file containing sfql list and macro definitions.

	
filter(reader, query: str = None, paths: list = [])

	Filter iterable reader according to sfql expression.

	Parameters:

	
	reader (FlattenedSFReader) – sysflow reader

	query (str) – sfql query.

	paths (list) – a list of paths to file containing sfql list and macro definitions.

	
getAttributes()

	Return list of attributes supported by sfql.

	
class sysflow.sfql.SfqlMapper

	

 Deployments (sf-deployments repo)

Deployments (sf-deployments repo)

SysFlow can be deployed using Docker Compose, Helm, and binary packages.

Contents:

	Docker Compose
	Pre-requisites

	Deploy SysFlow

	Sysflow trace inspection

	Analyzing collected traces

	Helm Charts
	Prerequisites

	Install minikube (optional)

	Deploy SysFlow

	Binary packages (deb|rpm)
	Debian distributions

	RPM distributions

	Running

	Configuration

 Docker Compose

Docker Compose

This repository contains utility scripts to deploy a docker telemetry stack.

Pre-requisites

	Docker (installing Docker [https://docs.docker.com/engine/install/])

	Docker Compose (installing Compose [https://docs.docker.com/compose/install/])

To guarantee a smooth deployment, the kernel headers must be installed in the host operating system.

This can usually be done on Debian-like distributions with:

apt-get -y install linux-headers-$(uname -r)

Or, on RHEL-like distributions:

yum -y install kernel-devel-$(uname -r)

Deploy SysFlow

Three deployment configurations are described below: local (collector-only), batch export mode, and stream export mode. The local deployment stores collected traces on the local filesystem and the full stack deployments export the collected traces to a S3-compatible object storage server or streams SysFlow records to remote syslog server or ELK (additional exporters can be implemented as plugins).

Setup

Clone this repository and change directory as follows:

git clone https://github.com/sysflow-telemetry/sf-deployments.git
cd sf-deployments/docker

Local collection probe only

This deployment will install the Sysflow collection probe only, i.e., without an exporter to an external data store (e.g., S3). See below for the deploytment of the full telemetry stack.

To start the telemetry probe (collector only):

docker-compose -f docker-compose.collector.yml up

Tip: add container.type!=host to FILTER string located in ./config/.env.collector to filter out host (non-containerized) events.

To stop the collection probe:

docker-compose -f docker-compose.collector.yml down

Batch export

This deployment configuration includes the SysFlow Collector and S3 Exporter.

First, create the docker secrets used to connect to the S3 object store:

echo "<s3 access key>" > ./secrets/access_key
echo "<s3 secret key>" > ./secrets/secret_key

Then, configure the S3 endpoint in the exporter settings (default values point to a local minio object store described below). Exporter configuration is located in ./config/.env.exporter. Collector settings can be changed in ./config/.env.collector. Additional settings can be configured directly in compose file.

To start the telemetry stack:

docker-compose -f docker-compose.exporter.yml up

To stop the telemetry stack:

docker-compose -f docker-compose.exporter.yml down

To start the telemetry stack with a local minio object store:

docker-compose -f docker-compose.minio.yml -f docker-compose.exporter.yml up

To stop the local minio instance and the telemetry stack:

docker-compose -f docker-compose.minio.yml -f docker-compose.exporter.yml down

Stream processing

This deployment configuration includes the SysFlow Collector and Processor with rsyslog exporter. Alternatively, you can change the Processor configuration to stream events to ELK, or any other custom exporter plugin. Check the Processor’s exporter configuration [https://sysflow.readthedocs.io/en/latest/processor.html#exporter-configuration] for details on how to configure the exporter to stream events to other backends.

First, configure the rsyslog endpoint in the processor settings. Processor configuration is located in ./config/.env.processor. Collector settings can be changed in ./config/.env.collector. Additional settings can be configured directly in compose file.

To start the telemetry stack:

docker-compose -f docker-compose.processor.yml up

To stop the telemetry stack:

docker-compose -f docker-compose.processor.yml down

Sysflow trace inspection

Run sysprint and point it to a trace file. In the examples below, sysprint is an alias for:

docker run --rm -v /mnt/data:/mnt/data sysflowtelemetry/sysprint

Tabular output

sysprint /mnt/data/<trace name>

JSON output

sysprint -o json /mnt/data/<trace name>

CSV output

sysprint -o csv /mnt/data/<trace name>

Inspect traces exported to an object store

sysprint -i s3 -c <s3_endpoint> -a <s3_access_key> -s <s3_secret_key> <bucket_name>

Tip: see all options of the sysprint utility with -h option.

Inspect example traces

Sample trace files are provided in sf-collector/tests. Copy them into /mnt/data to inspect inside sysprint’s environment.

sysprint /mnt/data/tests/client-server/tcp-client-server.sf

Tip: other samples can be found in the tests directory

Analyzing collected traces

A Jupyter environment [https://hub.docker.com/r/sysflowtelemetry/sfnb] is also available for inspecting and implementing analytic notebooks on collected SysFlow data. It includes APIs for data manipulation using Pandas dataframes and a native query language (sfql) with macro support. To start it locally with example notebooks, run:

git clone https://github.com/sysflow-telemetry/sf-apis.git && cd sf-apis
docker run --rm -d --name sfnb -v $(pwd)/pynb:/home/jovyan/work -p 8888:8888 sysflowtelemetry/sfnb

Then, open a web browser and point it to http://localhost:8888 (alternatively, the remote server name or IP where the notebook is hosted). To obtain the notebook authentication token, run docker logs sfnb.

 Helm Charts

Helm Charts

Helm charts are provided to facilitate the deployment and configuration of SysFlow on Kubernetes.

These charts have been tested on minikube [https://minikube.sigs.k8s.io/] and IBM Cloud Kubernetes Service [https://www.ibm.com/cloud/kubernetes-service]. They shoud work on vanilla Kubernetes installations but it’s possible that minor differences in how authentication is handled by different cloud providers require small modifications to the charts.

These scripts have been tested with helm versions 2 and 3. Some helm commands may not work with other versions of helm.

Prerequisites

	kubectl (installing kubectl [https://kubernetes.io/docs/tasks/tools/install-kubectl])

	Helm (installing helm [https://helm.sh/docs/intro/install])

	Docker (optional)

Install minikube (optional)

To deploy SysFlow on a local Kubernetes instance (for development or testing), start by installing minikube in your macOS, Linux, or Windows system.

For example, to install minikube in Linux distributions, run:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd64
sudo install minikube-linux-amd64 /usr/local/bin/minikube

Then, start your cluster:

minikube start

Note: to install SysFlow on minikube, set sfcollector.ebpf and sfcollector.mountEtc to true in values.yaml located inside each chart.

Check the minikube docs [https://minikube.sigs.k8s.io/docs/start/] for additional installation options.

Tip: run eval $(minikube docker-env) to allow your Docker CLI to connect to minikube’s Docker environment.

The recommended driver for minikube is VirtualBox. Check the VirtualBox docs [https://www.virtualbox.org/wiki/Downloads] for installation instructions for your environment.

A note about Docker pull limits: If you run into an error when deploying SysFlow on minikube, check the logs to see if it’s related to the Docker pull limit being reached. It most likely is. To work around this inconvenience, connect to Minikube’s Docker environment (see above), log into Docker with docker login command, and pull the desired images manually, before installing the helm charts. Make sure the images pull policies are set to the default value IfNotPresent.

Deploy SysFlow

The SysFlow agent can be deployed in S3 (batch) or rsyslog (stream) export configurations.

Setup

Clone this repository and change directory as follows:

git clone https://github.com/sysflow-telemetry/sf-deployments.git
cd sf-deployments/helm

Installing the SysFlow agent with S3 Exporter

In this configuration, SysFlow exports the collected telemetry as trace files (batches of SysFlow records) to any S3-compliant object storage service.

This chart is located in charts/sf-exporter-chart, which deploys the SysFlow Collector and Exporter as a daemonset. The collector monitors the node, and writes trace files to a shared memory volume /mnt/data which the exporter manages and reads from to push completed traces to a S3-compliant object storage. The /mnt/data/ is mapped to a tmpfs filesystem, and you can specify its size using the tmpfsSize.

Installation scripts are provided to make installation easier. These scripts set up the environment including k8s secrets for S3 authentication. To connect to an S3-compliant data store, first take note of which port the S3 data store (s3Port) is configured. Minio installations listen on port 9000 by default. Also, if TLS is enabled on the S3 datastore, ensure s3Secure is true. Ensure that the s3Bucket is set to the desired S3 bucket location. The s3Location (aka s3_region), s3AccessKey and s3SecretKey and s3Endpoint are each passed in through the installation script if you use it.

To deploy the SysFlow agent with S3 export:

./scripts/installExporterChart.sh <s3_region> <s3_access_key> <s3_secret_key> <s3_endpoint> <s3_bucket>

Installing the SysFlow agent with rsyslog exporter

In this configuration, SysFlow exports the collected telemetry as events streamed to a rsyslog collector. This deployment enables the creation of customized edge pipelines, and offers a built-in policy engine to filter, enrich, and alert on SysFlow records.

This chart is located in charts/sf-processor-chart, which deploys the SysFlow Collector and Processor as a daemonset. The collector monitors the node, and streams SysFlow records to the processor, which executes a configurable edge analytic pipeline and export events to a rsyslog endpoint.

To deploy the SysFlow agent with rsyslog export:

./scripts/installProcessorChart.sh <syslog_host> <syslog_port> <syslog_proto>

Checking installation

To check that the install worked, run:

kubectl get pods -n sysflow

To check the log output of the collector container in a pod:

kubectl logs -f -c sfcollector <podname> -n sysflow

To check the log output of the exporter container in a pod:

kubectl logs -f -c sfexporter <podname> -n sysflow

To check the log output of the processor container in a pod:

kubectl logs -f -c sfprocessor <podname> -n sysflow

Removing the SysFlow agent

To remove the SysFlow agent:

./scripts/deleteChart.sh

Advanced customizations

Most of the defaults should work out of the box. The collector is currently set to rotating files in 5 min intervals (or 300 seconds). CGroup resource limits can be set on the collector, exporter, and processor to limit resource usage. These can be adjusted depending on requirements and resources limitations.

Note: sfcollector.dropMode is set to true by default for performance considerations.

Kubernetes can use different container runtimes. Older versions used the docker runtime; however, newer versions typically run either containerd or crio. It’s important to know which runtime you have if you want to get the full benefits of SysFlow. You tell the collector which runtime you are using based on the sock file you refer to in the criPath variable. If you are using the docker runtime, leave criPath blank. If you are using containerd, set criPath to “/var/run/containerd/containerd.sock” and if you are using crio, set criPath to “/var/run/crio/crio.sock”. If SysFlow files are empty or the container name variable is set to incomplete in SysFlow traces, this typically means that the runtime socket is not connected properly.

Note: the installation script installs the pods into a K8s namespace called sysflow.

Below is the list of customizable attributes for the charts, organized by component. These can be modified directly into the values.yaml located in each chart’s directory. They can also be set directly into the helm command invoked by our installation scripts through --set <attribute>=<value> parameters.

SysFlow Collector

	parameter

	description

	default

	sfcollector.imagepullpolicy

	Pull policy for image (Always|Never|IfNotPresent)

	Always

	sfcollector.repository

	Image repository

	sysflowtelemetry/sf-collector

	sfcollector.tag

	Image tag

	latest

	sfcollector.interval

	Interval in seconds to roll new trace files

	300

	sfcollector.outDir

	Directory in which collector writes trace files

	/mnt/data/

	sfcollector.filter

	Filter expression

	“"container.type!=host and container.name!=sfexporter and container.name!=sfcollector"”

	sfcollector.criPath

	Container runtime socket path. Use this “/var/run/containerd/containerd.sock”if running containerd runtime. Use “/var/run/crio/crio.sock” if running crio runtime.

	“”

	sfcollector.dropMode

	Drop mode filters syscalls in the kernel before they are passed up to the collector, resulting in much better performance and fewer event drops. Note: It filters mmap system calls from the event stream.

	true

	sfcollector.fileOnly

	Filters out any descriptor that is not a file, including unix sockets and pipes

	false

	sfcollector.procFlow

	Enables the creation of process flows

	false

	sfcollector.readMode

	Sets mode for reads: 0 enables recording all file reads as flows. 1 disables all file reads. 2 disables recording file reads to noisy directories: “/proc/”, “/dev/”, “/sys/”, “//sys/”, “/lib/”, “/lib64/”, “/usr/lib/”, “/usr/lib64/”.

	0

	sfcollector.ebpf

	Enables ebpf probe (required for minikube deployment)

	false

	sfcollector.mountEtc

	Mounts etc directory in container (required for minikube and Google COS)

	false

	sfcollector.collectionMode

	Template modes for enabling certain system calls. Currently supports 3 modes: flow” - full sysflows, “consume” - file reads, writes, closes turned off, “nofiles” - no fileevents or fileflows

	flow

	sfcollector.enableStats

	When enabled, logs stats on containers, processes, networkflows, fileflows and records written at interval set by “interval” attribute

	false

SysFlow Exporter

	parameter

	description

	default

	sfexporter.enabled

	Indicates whether the exporter will be used in the k8s deployment

	false

	sfexporter.imagepullpolicy

	Pull policy for image (Always|Never|IfNotPresent)

	Always

	sfexporter.repository

	Image repository

	sysflowtelemetry/sf-exporter

	sfexporter.tag

	Image tag

	latest

	sfexporter.log

	Exporter logging level. Can be DEBUG, INFO, WARNING, ERROR, CRITICAL

	INFO

	sfexporter.type

	Type of trace export - “s3” to export to S3 storage, “local” for local copy

	s3

	sfexporter.interval

	Interval in seconds to check whether to export trace files

	5

	sfexporter.outDir

	Directory shared between the collector and exporter and where collector writes

	/mnt/data/

	sfexporter.dirs

	Directories (comma separated) from which exporter will copy

	/mnt/data

	sfexporter.toDir

	Directories (comma separated) to copy trace too - only used when type = “local”. Must have same number of entries as dirs attribute

	commented out

	sfexporter.mode

	modes of copy (comma separated) move-del - move and delete file once finished writing - this is the only mode local copy supports. cont-update - continuously copy file over at interval (s3), cont-update-recur - continously update a directory structure recursively (s3). Must have same number of entries as dirs attribute

	move-del

	sfexporter.s3Endpoint

	S3 host address (only used when type s3)

	“<ip address>”

	sfexporter.s3Port

	S3 port (only used when type s3)

	443

	sfexporter.s3Bucket

	S3 bucket where to push traces (only used when type s3). Can be a comma separated list of buckets. Must have same number of entries as dirs attribute

	“<s3 bucket>”

	sfexporter.s3Location

	S3 location (only used when type s3)

	“<s3 region>”

	sfexporter.s3AccessKey

	S3 access key (only used when type s3)

	“<s3 access key>”

	sfexporter.s3SecretKey

	S3 secret key (only used when type s3)

	“<s3 secret key>”

	sfexporter.s3Secure

	S3 connection, true if TLS-enabled, false otherwise (only used when type s3)

	false

SysFlow Processor

	parameter

	description

	default

	sfprocessor.imagepullpolicy

	Pull policy for image (Always|Never|IfNotPresent)

	Always

	sfprocessor.repository

	Image repository

	sysflowtelemetry/sf-processor

	sfprocessor.tag

	Image tag

	latest

	sfprocessor.export

	Export type (terminal|file|syslog)

	syslog

	sfprocessor.override

	Override processor exporter in pipeline.json with values.yaml settings

	true

	sfprocessor.syslogHost

	rsyslog host address

	localhost

	sfprocessor.syslogPort

	rsyslog port

	514

	sfprocessor.syslogProto

	rsyslog protocol (udp|tcp|tcp+tls)

	tcp

	sfprocessor.configMapEnabled

	‘true’ if using config map for policy configs

	‘true’

	sfprocessor.findingsDir

	Directory to which raw findings are written. Must be the same as the findings.path value in the pipeline.json

	/mnt/findings

 Binary packages (deb|rpm)

Binary packages (deb|rpm)

SysFlow can be deployed directly on the host using its binary packages (since SysFlow 0.4.0).

We package SysFlow for debian- and rpm-based distros.

Debian distributions

Download the SysFlow packages (set $VERSION to a Sysflow release >=0.4.1):

wget https://github.com/sysflow-telemetry/sf-collector/releases/download/$VERSION/sfcollector-$VERSION-x86_64.deb \
 https://github.com/sysflow-telemetry/sf-processor/releases/download/$VERSION/sfprocessor-$VERSION-x86_64.deb

Install pre-requisites:

apt install -y llvm linux-headers-$(uname -r)

Install the SysFlow packages:

dpkg -i sfcollector-$VERSION-x86_64.deb sfprocessor-$VERSION-x86_64.deb

RPM distributions

Download the SysFlow packages (set $VERSION to a Sysflow release >=0.4.1):

wget https://github.com/sysflow-telemetry/sf-collector/releases/download/$VERSION/sfcollector-$VERSION-x86_64.rpm \
 https://github.com/sysflow-telemetry/sf-processor/releases/download/$VERSION/sfprocessor-$VERSION-x86_64.rpm

Install pre-requisites (Instructions for Rhel8 below):

subscription-manager repos --enable="codeready-builder-for-rhel-8-$(/bin/arch)-rpms"
dnf -y update
dnf -y install \
 kernel-devel-$(uname -r) \
 llvm-toolset

Install the SysFlow packages:

rmp -i sfcollector-$VERSION-x86_64.rpm sfprocessor-$VERSION-x86_64.rpm

Running

Start the SysFlow systemd service:

sysflow start

Check SysFlow service status:

sysflow status

Stop the SysFlow service:

sysflow stop

Configuration

Configuration options can be changed in /etc/sysflow. The Processor configuration is located in /etc/sysflow/pipelines/pipeline.local.json and can be used to change the processor configuration from its default settings. The Collector and systemd service configurations are located in /etc/sysflow/conf/sysflow.env.

 License

License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

 Contributing

Contributing

Contributing In General

Our project welcomes external contributions.

To contribute code or documentation, please submit a pull request to the proper github repositories.

A good way to familiarize yourself with the codebase and contribution process is
to look for and tackle low-hanging fruit in the github issue trackers associated with projects.
Before embarking on a more ambitious contribution, please quickly get in touch with us.

Note: We appreciate your effort, and want to avoid a situation where a contribution
requires extensive rework (by you or by us), sits in backlog for a long time, or
cannot be accepted at all!

Proposing new features

If you would like to implement a new feature, please raise an issue in the appropriate repository
before sending a pull request so the feature can be discussed. This is to avoid
you wasting your valuable time working on a feature that the project developers
are not interested in accepting into the code base.

Fixing bugs

If you would like to fix a bug, please raise an issue in the appropriate repository before sending a
pull request so it can be tracked.

Merge approval

The project maintainers use LGTM (Looks Good To Me) in comments on the code
review to indicate acceptance. A change requires LGTMs from two of the
maintainers of each component affected.

For a list of the maintainers, see the MAINTAINERS.md page in the appropriate repository.

Legal

Each source file must include a license header for the Apache
Software License 2.0. Using the SPDX format is the simplest approach.
e.g.

/*
Copyright <holder> All Rights Reserved.

SPDX-License-Identifier: Apache-2.0
*/

We have tried to make it as easy as possible to make contributions. This
applies to how we handle the legal aspects of contribution. We use the
same approach - the Developer’s Certificate of Origin 1.1 (DCO) [https://github.com/hyperledger/fabric/blob/master/docs/source/DCO1.1.txt] - that the Linux® Kernel community [https://elinux.org/Developer_Certificate_Of_Origin]
uses to manage code contributions.

We simply ask that when submitting a patch for review, the developer
must include a sign-off statement in the commit message.

Here is an example Signed-off-by line, which indicates that the
submitter accepts the DCO:

Signed-off-by: John Doe <john.doe@example.com>

You can include this automatically when you commit a change to your
local git repository using the following command:

git commit -s

Communication

Please feel free to connect with us on our Slack channel [https://join.slack.com/t/sysflow-telemetry/shared_invite/enQtODA5OTA3NjE0MTAzLTlkMGJlZDQzYTc3MzhjMzUwNDExNmYyNWY0NWIwODNjYmRhYWEwNGU0ZmFkNGQ2NzVmYjYxMWFjYTM1MzA5YWQ] or
via email. Note that the projects in this repository are not formal products. As a result, the communication channels are to the maintainers and not to a support staff.

Setup

The documentation is a work in progress but should provide a good overview on how to get started with the project. The Dockerfile also provides a treasure trove of information
on how to build the application, dependencies, and how to test the collector.

Testing

This project is in its infancy and with limited resources we haven’t built many testers for the projects. For the sf-collector, we do have a set of unit tests that test the coverage of most of the events of interest in sf-collector/tests.

 Code of Conduct

Code of Conduct

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at Slack channel [https://join.slack.com/t/sysflow-telemetry/shared_invite/enQtODA5OTA3NjE0MTAzLTlkMGJlZDQzYTc3MzhjMzUwNDExNmYyNWY0NWIwODNjYmRhYWEwNGU0ZmFkNGQ2NzVmYjYxMWFjYTM1MzA5YWQ] or via email. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Qiskit project’s Code of Conduct [https://github.com/Qiskit/qiskit/blob/master/CODE_OF_CONDUCT.md] and has roots from the Contributor Covenant [https://www.contributor-covenant.org/], version 1.4, available at version [http://contributor-covenant.org/version/1/4].

 Talks & Publications

Talks & Publications

If citing SysFlow, please use [TAS20].

Below you can find a complete list of talks and papers associated with SysFlow.

Note

Please reach out to us [https://sysflow.readthedocs.io/en/latest/index.html#keep-in-touch] if you have an entry to add to this list.

[TAS20]
Teryl Taylor, Frederico Araujo, and Xiaokui Shu. Towards an open format for scalable system telemetry. In IEEE International Conference on Big Data (Big Data), 1031–1040. 2020. URL: https://arxiv.org/abs/2101.10474.

[BATJ24]
William Blair, Frederico Araujo, Teryl Taylor, and Jiyong Jang. Automated synthesis of effect graph policies for microservice-aware stateful system call specialization. In 2024 IEEE Symposium on Security and Privacy (SP), 64–64. 2024. URL: https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00064.

[AT23]
Frederico Araujo and Teryl Taylor. Relational observability for cloud-native security and data science. 2023. URL: https://sched.co/1K5IT.

[JAT22]
Trent Jaeger, Frederico Araujo, and Teryl Taylor. Provenance tracking with attack graphs using sysflow. 2022. URL: https://avengercon.org/workshop/Provenance-Tracking-With-Attack-Graphs-Using-SysFlow/.

[AT22]
Frederico Araujo and Teryl Taylor. Self-modulating endpoint observability. 2022. URL: https://sched.co/lDbn.

[SATJ21]
Xiaokui Shu, Frederico Araujo, Teryl Taylor, and Jiyong Jang. An open stack for threat hunting in hybrid cloud with connected observability. 2021. URL: https://europe-arsenal-cfp.blackhat.com/.

[AT21]
Frederico Araujo and Teryl Taylor. A pluggable edge-processing pipeline for SysFlow. 2021. URL: https://sched.co/ePsl.

[BATJ21]
William Blair, Frederico Araujo, Teryl Taylor, and Jiyong Jang. Microservice-aware reference monitoring through hybrid program analysis. 2021. URL: https://sched.co/ePs3.

[AT20]
Frederico Araujo and Teryl Taylor. SysFlow: scalable system telemetry for improved security analytics. 2020. URL: https://sched.co/VPW3.

 Python Module Index

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sysflow	

 	
 	
 sysflow.formatter	

 	
 	
 sysflow.graphlet	

 	
 	
 sysflow.objtypes	

 	
 	
 sysflow.opflags	
 This module lists all operations currently supported by SysFlow.

 	
 	
 sysflow.reader	

 	
 	
 sysflow.sfql	

 	
 	
 sysflow.utils	

 Index

Index

 A
 | C
 | D
 | E
 | F
 | G
 | M
 | N
 | O
 | P
 | S
 | T
 | V

A

 	
 	applyFuncJson() (sysflow.formatter.SFFormatter method)

 	
 	associatedMitigations() (sysflow.graphlet.Graphlet method)

C

 	
 	compare() (sysflow.graphlet.Graphlet method)

 	
 	compile() (sysflow.sfql.SfqlInterpreter method)

 	countermeasures() (sysflow.graphlet.Graphlet method)

D

 	
 	data() (sysflow.graphlet.Graphlet method)

 	
 	df() (sysflow.graphlet.Graphlet method)

E

 	
 	Edge (class in sysflow.graphlet)

 	enableAllFields() (sysflow.formatter.SFFormatter method)

 	enableK8sEventFields() (sysflow.formatter.SFFormatter method)

 	
 	enablePodFields() (sysflow.formatter.SFFormatter method)

 	enrich() (sysflow.sfql.SfqlInterpreter method)

 	evaluate() (sysflow.sfql.SfqlInterpreter method)

 	EvtEdge (class in sysflow.graphlet)

F

 	
 	FileFlowNode (class in sysflow.graphlet)

 	filter() (sysflow.sfql.SfqlInterpreter method)

 	
 	FlattenedSFReader (class in sysflow.reader)

 	FlowEdge (class in sysflow.graphlet)

G

 	
 	getAttributes() (sysflow.sfql.SfqlInterpreter method)

 	getEnvStr() (in module sysflow.utils)

 	getFields() (sysflow.formatter.SFFormatter method)

 	getIpIntStr() (in module sysflow.utils)

 	getNetFlowStr() (in module sysflow.utils)

 	getOpenFlags() (in module sysflow.utils)

 	
 	getOpFlags() (in module sysflow.utils)

 	getOpFlagsStr() (in module sysflow.utils)

 	getOpStr() (in module sysflow.utils)

 	getProcess() (sysflow.reader.FlattenedSFReader method)

 	getTimeStr() (in module sysflow.utils)

 	getTimeStrIso8601() (in module sysflow.utils)

 	Graphlet (class in sysflow.graphlet)

M

 	
 	mitigations() (sysflow.graphlet.Graphlet method)

 	
 module

 	sysflow.formatter

 	sysflow.graphlet

 	sysflow.objtypes

 	sysflow.opflags

 	sysflow.reader

 	sysflow.sfql

 	sysflow.utils

N

 	
 	NestedNamespace (class in sysflow.reader)

 	
 	NetFlowNode (class in sysflow.graphlet)

 	Node (class in sysflow.graphlet)

O

 	
 	ObjectTypes (class in sysflow.objtypes)

P

 	
 	ProcessNode (class in sysflow.graphlet)

S

 	
 	SFFormatter (class in sysflow.formatter)

 	SfqlInterpreter (class in sysflow.sfql)

 	SfqlMapper (class in sysflow.sfql)

 	SFReader (class in sysflow.reader)

 	
 sysflow.formatter

 	module

 	
 sysflow.graphlet

 	module

 	
 sysflow.objtypes

 	module

 	
 	
 sysflow.opflags

 	module

 	
 sysflow.reader

 	module

 	
 sysflow.sfql

 	module

 	
 sysflow.utils

 	module

T

 	
 	tags() (sysflow.graphlet.Graphlet method)

 	toCsvFile() (sysflow.formatter.SFFormatter method)

 	toDataframe() (sysflow.formatter.SFFormatter method)

 	toJson() (sysflow.formatter.SFFormatter method)

 	
 	toJsonFile() (sysflow.formatter.SFFormatter method)

 	toJsonStdOut() (sysflow.formatter.SFFormatter method)

 	toStdOut() (sysflow.formatter.SFFormatter method)

 	ttps() (sysflow.graphlet.Graphlet method)

V

 	
 	view() (sysflow.graphlet.Graphlet method)

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 SysFlow Telemetry Pipeline

 		
 Quick Start

 		
 Deployment options

 		
 Inspecting collected traces

 		
 Analyzing collected traces

 		
 SysFlow Specification

 		
 Overview

 		
 Entities

 		
 Events

 		
 Flows

 		
 LibSysFlow

 		
 Basic Usage

 		
 Public API

 		
 SysFlowConfig

 		
 SysFlowDriver

 		
 Installation

 		
 Debian

 		
 RPM

 		
 Alpine (musl)

 		
 Compilation

 		
 Advanced Usage

 		
 Configuration

 		
 Exception Handling

 		
 Logging

 		
 SysFlow Collector (sf-collector repo)

 		
 Build

 		
 Cloning sources

 		
 Manifest

 		
 Building using Docker

 		
 Building directly on a host

 		
 Binary Packaging

 		
 Running

 		
 Command line usage

 		
 Docker usage

 		
 Event rate optimization

 		
 SysFlow Processor (sf-processor repo)

 		
 Pre-requisites

 		
 Build

 		
 Usage

 		
 Configuration

 		
 Policy engine configuration

 		
 Exporter configuration

 		
 Environment variables

 		
 Rate limiter configuration (experimental)

 		
 Policy Language

 		
 Attribute names

 		
 $ Jsonpath Expressions

 		
 Operations

 		
 User-defined Actions

 		
 Plugins

 		
 Pre-requisites

 		
 Processor Plugins

 		
 Handler Plugins

 		
 Action Plugins

 		
 Docker usage

 		
 Processor environment

 		
 SysFlow Exporter (sf-exporter repo)

 		
 Build

 		
 Docker usage

 		
 Development

 		
 SysFlow APIs and Utilities (sf-apis repo)

 		
 SysFlow APIs and Utilities

 		
 Cloning source

 		
 Avro IDL and schema files

 		
 SysFlow Avro C++

 		
 SysFlow Avro Python 3

 		
 SysFlow utilities

 		
 SysFlow Python API Reference

 		
 SysFlow Reader API

 		
 SysFlow Formatter API

 		
 SysFlow Object Types

 		
 SysFlow Utils API

 		
 SysFlow Graphlet API

 		
 SysFlow QL API

 		
 Deployments (sf-deployments repo)

 		
 Docker Compose

 		
 Pre-requisites

 		
 Deploy SysFlow

 		
 Sysflow trace inspection

 		
 Analyzing collected traces

 		
 Helm Charts

 		
 Prerequisites

 		
 Install minikube (optional)

 		
 Deploy SysFlow

 		
 Binary packages (deb|rpm)

 		
 Debian distributions

 		
 RPM distributions

 		
 Running

 		
 Configuration

 		
 License

 		
 Contributing

 		
 Contributing In General

 		
 Proposing new features

 		
 Fixing bugs

 		
 Merge approval

 		
 Legal

 		
 Communication

 		
 Setup

 		
 Testing

 		
 Coding style guidelines

 		
 Code of Conduct

 		
 Contributor Covenant Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

 		
 Talks & Publications

_static/SF_Collector_Processor.png
SysFlow (agent) Telemetry Processing

rsyslog

JSON rsyslog
Collector SIEMS

Processor

Collector

_static/SF_Object_View.png
e

_images/SF_Object_View_v5.png
File (entity))

fileID

FileFlow {activity))

- fileID : OID

- procID: OID

- ts: Timestamp

- endTs : Timestamp

- fd: Integer

- opflags : Integer

- openflags : Integer

- threadID : Integer

- numRRecvOps : Long
- numWSendOps : Long
- numRRecvBytes : Long
- numWSendBytes : Long

procID

A 4

- ID:0ID

- path: String

- ts: Timestamp

- type : Char

- containerID : OID
- state : ObjectState

containerID

Container (entity))

Pod {entity))

K8sEvent {(activity))

A A

fileID newFileID

FileEvent (activity))

- fileID : OID

- procID: OID

- newFileID : OID

- ts: Timestamp

- fd: Integer

- opflags : Integer
- flags : Integer

- threadID : Integer
- ret: Integer

\ 4

procID

- ID:0ID

- name : String

- imageName : String
- imagelD : String

- type : ContainerType
- privileged : Boolean
- podID: OID

- state : ObjectState

podID

A

ID:0ID

ts : Timestamp
name: String
nodeName: String
hostIP: Integer
internalIP: Integer
namespace: String
restartCount: Integer
labels: String[]
selectors: String|[]
services: Service[]

containerID Q parentID
Process {entity))

A 4

Enum Types

ObjectState {enum))

CREATED
MODIFIED
REUP

A 4

h 4

procID

- ID:0OID

- parentID: OID

- ts: Timestamp

- exe : String

- exeArgs : String

- userID : Integer

- userName : String
- grouplID : Integer
- groupName : String
- tty : Boolean

- containerID : OID
- entry: Integer

- env: String

- cwd: String

- state : ObjectState

procID

- ts: Timestamp
- kind : Kind

- action : Action

- message : String

NetworkEvent (activity))

A

procID

procID : OID

ts : Timestamp

- opflags : Integer
- flags : Integer

- threadID : Integer
- sip : Integer

- sport : Integer

- dip : Integer

- dport : Integer

- proto: Integer

NetworkFlow {activity))

A

procID

ContainerType {enum))

CT_DOCKER
CT_LXC
CT_LIBVIRT_LXC
CT_MESOS
CT_RKT
CT_CUSTOM

ProcessEvent {(activity))

- procID: OID

- ts: Timestamp

- opflags : Integer
- args : String[]

- threadID : Integer
- ret: Integer

ProcessFlow {activity))

- procID: OID

- ts: Timestamp

- endTs : Timestamp
- opflags : Integer

- args : String][]

- counter: Integer

- procID: OID

- ts: Timestamp

- endTs : Timestamp

- opflags : Integer

- threadID : Integer

- sip : Integer

- sport : Integer

- dip : Integer

- dport : Integer

- proto: Integer

- numRRecvOps : Long
- numWSendOps : Long
- numRRecvBytes : Long
- numWSendBytes : Long

Header {(entity))

- version : Long
- exporter : String
- ip: String

_static/SF_Collector_Exporter.png
SysFlow (agent) Telemetry Processing

s3
Exporter Hache Object Search &
Storage Analytics

Collector

_static/SF_Object_View_v2.png
File (entity) Container {(entity)) Pod (entity)) K8sEvent (activity))
1D 0ID -ID:0ID - ID:0ID - t;:Timgstamp
i Svin e |meiSe | | Timestan e
> . tf/r.Je I:r?lﬁz\ramp »| - E(magfeéD:tSt.ringT po - EodeNjo\me: String - message : String
- containerID : OID " privileged : Boolean " internallP: Tateger
- state : ObjectState R 201D ‘a- QT —
podID: OID - namespace: String NetworkEvent activity))
A A - state : ObjectState - restartCount: Integer
i - labels: String]] - procID : OID
fileID | newFileID - sele.ctorS:S Strlng[[]] - ts: Timestamp
- — - services: Service - opflags : Integer
FileEvent (activity) " fage Integer
o] procID | - threadID : Integer
e o, s g
fileID - newFileID : OID containerID : Z?'?rtlh%g;i%er
FileFlow (activity)) : 1Ecsj::-1rr|1rtneegset?mp Process ((entity)) - dports%nteger
il . - opflags : Integer roclD - ID: 0ID - proto: Integer
- filelD: OID - flags : Integer P p| - parentID : OID
- proclD : OID - threadID : Integer - ts:Timestamp —
- ts:Timestamp - ret : Integer - exe: String < NetworkFlow {activity))
- ?Jldirstiglmes'famp - exeArgs : String D OID
- fd: Integer - 1D : Int - procID:
- opflags : Integer procID . ﬂig:NamQ :esgt(?irng < procID | . ts: Timestamp
- openflags : Integer "| - groupID : Integer h - endTs : Timestamp
- threadID : Integer - groupName : String - opflags : Integer
- numRRecvOps : Long - tty : Boolean - threadID : Integer
- numWSendOps : Long al - containerID : OID < - sip: Integer
- numRRecvBytes : Long | - entry: Integer B - sport : Integer
- numWSendBytes : Long - state : ObjectState - dip : Integer
- dport : Integer
- proto: Integer
. - numRRecvOps : Long
Enum Types procID procID - numWSendOps : Long
— — - numRRecvBytes : Lon
ContainerType {enum} ProcessEvent {activity)) ProcessFlow ((activity)) _ numWSendgytes . Longg
ObjectState ({enum)) CT_DOCKER - proclD : OID - proclD : OID
CT_LXC - ts: Timestamp - ts: Timestamp
CREATED CT_LIBVIRT_LXC - opflags : Integer - endTs : Timestamp Header {entity))
MODIFIED CT_MESOS - args : String[] - opflags : Integer on L
REUP CT_RKT - threadID : Integer - args : String[] : ver5|otn : .g[(‘g.
CT_CUSTOM - ret: Integer - counter : Integer i ie;psotrriﬁrg- ring

_static/SF_Object_View_v5.png
File (entity))

fileID

FileFlow {activity))

- fileID : OID

- procID: OID

- ts: Timestamp

- endTs : Timestamp

- fd: Integer

- opflags : Integer

- openflags : Integer

- threadID : Integer

- numRRecvOps : Long
- numWSendOps : Long
- numRRecvBytes : Long
- numWSendBytes : Long

procID

A 4

- ID:0ID

- path: String

- ts: Timestamp

- type : Char

- containerID : OID
- state : ObjectState

containerID

Container (entity))

Pod {entity))

K8sEvent {(activity))

A A

fileID newFileID

FileEvent (activity))

- fileID : OID

- procID: OID

- newFileID : OID

- ts: Timestamp

- fd: Integer

- opflags : Integer
- flags : Integer

- threadID : Integer
- ret: Integer

\ 4

procID

- ID:0ID

- name : String

- imageName : String
- imagelD : String

- type : ContainerType
- privileged : Boolean
- podID: OID

- state : ObjectState

podID

A

ID:0ID

ts : Timestamp
name: String
nodeName: String
hostIP: Integer
internalIP: Integer
namespace: String
restartCount: Integer
labels: String[]
selectors: String|[]
services: Service[]

containerID Q parentID
Process {entity))

A 4

Enum Types

ObjectState {enum))

CREATED
MODIFIED
REUP

A 4

h 4

procID

- ID:0OID

- parentID: OID

- ts: Timestamp

- exe : String

- exeArgs : String

- userID : Integer

- userName : String
