
SysFlow Telemetry Pipeline
Release 0.4

The SysFlow team

Jan 15, 2024

CONTENTS:

1 Keep in touch 3

2 Bugs & Feature requests 5

3 License 7
3.1 Quick Start . 7
3.2 SysFlow Specification . 8
3.3 LibSysFlow . 19
3.4 SysFlow Collector (sf-collector repo) . 26
3.5 SysFlow Processor (sf-processor repo) . 30
3.6 SysFlow Exporter (sf-exporter repo) . 51
3.7 SysFlow APIs and Utilities (sf-apis repo) . 54
3.8 Deployments (sf-deployments repo) . 65
3.9 License . 75
3.10 Contributing . 79
3.11 Code of Conduct . 81
3.12 Contributor Covenant Code of Conduct . 81
3.13 Talks & Publications . 82

4 Indices and tables 83

Bibliography 85

Python Module Index 87

Index 89

i

ii

SysFlow Telemetry Pipeline, Release 0.4

The SysFlow Telemetry Pipeline is a framework for monitoring cloud and enterprise workloads. The framework builds
the plumbing required for system telemetry so that users can focus on writing and sharing analytics on a scalable,
common open-source platform.

Note: If in a hurry, skip to our quick start guide.

The backbone of the telemetry pipeline is a new data format which lifts raw system event information into an ab-
straction that describes process behaviors, and their relationships with containers, files, and network activity. This
object-relational format is highly compact, yet it provides broad visibility into legacy endpoints and container clouds.

The platform is designed as a pluggable edge processing architecture which includes a policy engine that accepts
declarative policies that support edge filtering, tagging, and alerting on SysFlow streams. It also offers several APIs
that allow users to process SysFlow with their favorite toolkits.

The pipeline can be deployed using Docker, Kubernetes, OpenShift, and bare metal/VMs. The SysFlow agent can
be configured as an edge analytics pipeline to stream SysFlow records through rsyslog, or as a batch exporter of raw
SysFlow traces to S3-compatible object stores.

An integrated Jupyter environment makes it easy to perform log hunting on collected traces. There are also Apache
Avro schema files for SysFlow so that users can generate APIs for other programming languages. C++, Python, and
Golang APIs are available, allowing users to interact with SysFlow traces programmatically.

To learn more about SysFlow, check the table of contents below.

We welcome feedback, bug reports, and contributions!

CONTENTS: 1

https://sysflow.readthedocs.io/en/latest/quick.html
https://sysflow.readthedocs.io/en/latest/spec.html
https://sysflow.readthedocs.io/en/latest/deploy.html
https://sysflow.readthedocs.io/en/latest/quick.html#deployment-options
https://sysflow.readthedocs.io/en/latest/quick.html#analyzing-collected-traces
https://github.com/sysflow-telemetry/sf-apis

SysFlow Telemetry Pipeline, Release 0.4

2 CONTENTS:

CHAPTER

ONE

KEEP IN TOUCH

Please connect with us on our Slack community!

3

https://join.slack.com/t/sysflow-telemetry/shared_invite/enQtODA5OTA3NjE0MTAzLTlkMGJlZDQzYTc3MzhjMzUwNDExNmYyNWY0NWIwODNjYmRhYWEwNGU0ZmFkNGQ2NzVmYjYxMWFjYTM1MzA5YWQ

SysFlow Telemetry Pipeline, Release 0.4

4 Chapter 1. Keep in touch

CHAPTER

TWO

BUGS & FEATURE REQUESTS

For bugs and feature requests, please check our issue tracker.

5

https://github.com/sysflow-telemetry/sf-docs/issues

SysFlow Telemetry Pipeline, Release 0.4

6 Chapter 2. Bugs & Feature requests

CHAPTER

THREE

LICENSE

SysFlow and all projects are released under the Apache v2.0 license.

3.1 Quick Start

We encourage you to check the documentation first, but here are a few tips for a quick start.

3.1.1 Deployment options

The SysFlow agent can be deployed in batch or edge processing export configurations. In the batch configuration,
SysFlow exports the collected telemetry as trace files (batches of SysFlow records) to any S3-compliant object storage
service.

In edge processing configuration, SysFlow exports the collected telemetry as events streamed to a rsyslog collector or
Elasticsearch. This deployment enables the creation of customized edge pipelines, and offers a built-in policy engine
to filter, enrich, and alert on SysFlow records.

Instructions for Docker Compose, Helm, and binary package deployments of complete SysFlow stacks are available
here.

3.1.2 Inspecting collected traces

A command line utilitiy is provided for inspecting collected traces or convert traces from SysFlow’s compact binary
format into human-readable JSON or CSV formats.

docker run --rm -v /mnt/data:/mnt/data sysflowtelemetry/sysprint /mnt/data/<trace>

where trace is the the name of the trace file inside /mnt/data. If empty, all files in /mnt/data are processed. By
default, the traces are printed to the standard output with a default set of SysFlow attributes. For a complete list of
options, run:

docker run --rm -v /mnt/data:/mnt/data sysflowtelemetry/sysprint -h

This command line tool can also be installed directly on the host using pip.

python3 -m pip install sysflow-tools

7

https://sysflow.readthedocs.io/en/latest/deploy.html
https://hub.docker.com/r/sysflowtelemetry/sysprint

SysFlow Telemetry Pipeline, Release 0.4

3.1.3 Analyzing collected traces

A Jupyter environment is available for inspecting and implementing analytic notebooks on collected SysFlow data. It
includes APIs for data manipulation using Pandas dataframes and a native query language (sfql) with macro support.
To start it locally with example notebooks, run:

git clone https://github.com/sysflow-telemetry/sf-apis.git && cd sf-apis
docker run --rm -d --name sfnb -v $(pwd)/pynb:/home/jovyan/work -p 8888:8888␣
→˓sysflowtelemetry/sfnb

Then, open a web browser and point it to http://localhost:8888 (alternatively, the remote server name or IP where
the notebook is hosted). To obtain the notebook authentication token, run docker logs sfnb.

3.2 SysFlow Specification

The SysFlow format lifts raw system event information into an abstraction that describes process behaviors, and their
relationships with containers, files, and network. This object-relational format is highly compact, yet it provides broad
visibility into container clouds. The framework includes several APIs that allow users to process SysFlow with their
favorite toolkits.

3.2.1 Overview

Figure 1 shows a diagram of the SysFlow format.

Entities represent the components on a system that we are interested in monitoring. We currently support four types
of entities: Pods, Containers, Processes, and Files. As shown in Figure 1, Containers contain references to both Pods,
Processes and Files, and the four are linked through object identifiers (more on this later).

Entity behaviors are modeled as events or flows. Events represent important individual behaviors of an entity that
are broken out on their own due to their importance, their rarity, or because maintaining operation order is important.
An example of an event would be a process clone or exec, or the deletion or renaming of a file. By contrast, a Flow
represents an aggregation of multiple events that naturally fit together to describe a particular behavior. For example,
we can model the network interactions of a process and a remote host as a bidirectional flow that is composed of several
events, including connect, read, write, and close. SysFlow also model events generated by the Kubernetes controller.

SysFlow enables users to configure the granularity of system-level data desired based on resource limitations and
data analytics requirements. In this way, behaviors can be broken out into individual events or combined into smaller
aggregated volumetric flows. The current specification describes events and flows in three key behavioral areas: Files,
Networks, and Processes.

8 Chapter 3. License

https://hub.docker.com/r/sysflowtelemetry/sfnb

SysFlow Telemetry Pipeline, Release 0.4

Figure 1: SysFlow Object Relational View

Entities

Entities are the components on a system that we are interested in monitoring. These include pods, containers, processes,
and files. We also support a special entity object called a Header, which stores information about the SysFlow version,
and a unique ID representing the host or virtual machine monitored by the SysFlow exporter. The header is always the
first record appearing in a SysFlow File. All other entities contain a timestamp, an object ID and a state. The timestamp
is used to indicate the time at which the entity was exported to the SysFlow file.

Object ID

Object IDs allow events and flows to reference entities without having duplicate information stored in each record.
Object IDs are not required to be globally unique across space and time. In fact, the only requirement for uniqueness is
that no two objects managed by a SysFlow exporter can have the same ID simultaneously. Entities are always written
to the binary output file before any events, and flows associated with them are exported. Since entities are exported
first, each event, and flow is matched with the entity (with the same id) that is closest to it in the file. Furthermore,
every binary output file must be self-contained, meaning that all entities referenced by flows/events must be present in
every SysFlow file generated.

State

The state is an enumeration that indicates why an entity was written to disk. The state can currently be one of three
values:

3.2. SysFlow Specification 9

https://sysflow.readthedocs.io/en/latest/_static/SF_Object_View_v5.png

SysFlow Telemetry Pipeline, Release 0.4

State Description
CRE-
ATED

Indicates that the entity was recently created on the host/VM. For example, a process clone.

MODI-
FIED

Indicates that some attributes of the entity were modified since the last time it was exported.

REUP Indicates that the entity already existed, but is being exported again, so that output files can be self-
contained.

Each entity is defined below with recommendations on what to use for object identifiers, based on what is used in the
current implementation of the SysFlow exporter.

Header

The Header entity is an object which appears at the beginning of each binary SysFlow file. It contains the current
version of SysFlow as supported in the file, and the exporter ID.

Attribute Type Description Since (schema version)
version long The current SysFlow version. 1
exporter string Globally unique id representing the host monitored by SysFlow. 1
ip string IP address in dot notation representing the monitored host. 2

Container

The Container entity represents a system or application container such as docker or LXC. It contains important infor-
mation about the container including its id, name, and whether it is privileged.

Attribute Type Description Since (schema
version)

id string Unique string representing the Container Object as provided by docker,
LXC, etc.

1

state enum state of the process (CREATED, MODIFIED, REUP). not implemented
times-
tamp (ts)

int64 The timestamp when container object is exported (nanoseconds). not implemented

name string Container name as provided by docker, LXC, etc. 1
image string Image name associated with container as provided by docker, LXC, etc. 1
imageID string Image ID associated with container as provided by docker, LXC, etc. 1
type enum Can be one of: CT_DOCKER, CT_LXC, CT_LIBVIRT_LXC,

CT_MESOS, CT_RKT, CT_CUSTOM
1

privileged boolean If true, the container is running with root privileges 1

10 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

Pods

The Pod entity represents a logical aggregation of containers in Kubernetes. It contains metadata about k8s pod in-
cluding its id, name, and host and internal IPs.

Attribute Type Description Since (schema ver-
sion)

id string Unique string representing the Pod Object as provided by k8s or
OpenShift

4

timestamp
(ts)

int64 The timestamp when pod object is exported (nanoseconds) 4

name string Pod name 4
nodeName string None name 4
hostIP int32 Host IP address (the exposed IP address of the Pod) 4
internalIP int32 Internal Pod IP address 4
namespace string Namespace in which the pod runs 4
restart-
Count

int64 Number of restarts that have occurred for the pod 4

labels string[] Labels associated with the pod 4
selectors Selec-

tor[]
K8s selectors associated with the pod 4

services Ser-
vice[]

K8s services associated with the pod 4

Process

The process entity represents a running process on the system. It contains important information about the process
including its host pid, creation time, oid id, as well as references to its parent id. When a process entity is exported to
a SysFlow file, all its parent processes should be exported before the process, as well as the process’s Container entity.
Processes are only exported to a SysFlow file if an event or flow associated with that process or any of its threads are
exported. Threads are not explicitly exported in the process object but are represented in events and flows through a
thread id field. Finally, a Process entity only needs to be exported to a file once, unless it’s been modified by an event
or flow.

NOTE In current implementation, the creation timestamp is the time at which the process is cloned. If
the process was cloned before capture was started, this value is 0. The current implementation also has
problems getting absolute paths for exes when relative paths are used to launch processes.

3.2. SysFlow Specification 11

SysFlow Telemetry Pipeline, Release 0.4

Attribute Type Description Since
(schema
version)

state enum state of the process (CREATED, MODIFIED, REUP) 1
OID: host
pidcreate ts

struct
int64int64

The Process OID contains the host pid of the project, and cre-
ation timestamp.

1

POID: parent host
pidparent create ts

struct
int64int64

The OID of the parent process can be NULL if not available or
if a root process.

1

timestamp (ts) int64 The timestamp when process object is exported (nanoseconds). 1
exe string Full path (if available) of the executable used in the process

launch; otherwise, it’s the name of the exe.
1

exeArgs string Concatenated list of args passed on process startup. 1
uid int32 User ID under which the process is running. 1
userName string User name under which the process is running. 1
gid int32 Group ID under which the process is running 1
groupName string Group Name under which the process is running 1
tty boolean If true, the process is tied to a shell 1
containerId string Unique string representing the Container Object to which the

process resides. It can be NULL if process isn’t in a container.
1

entry boolean If true, the process is a container or system entrypoint (i.e., vir-
tual pid = 1).

2

cwd string Current working directory of the process. 5
env string[] Environment variables array exported to the process. 5

File

The File entity represents file-based resources on a system including files, directories, unix sockets, and pipes.

NOTE Current implementation does not have access to inode related values, which would greatly im-
prove object ids. Also, the current implementation has some issues with absolute paths when monitoring
operations that use relative paths.

At-
tribute

Type Description Since
(schema
version)

state enum state of the file (CREATED, MODIFIED, REUP) 1
FOID: string

(128bit)
File Identifier, is a SHA1 hash of the concatenation of the path + container
ID

1

times-
tamp
(ts)

int64 The timestamp when file object is exported (nanoseconds). 1

restype enum Indicates the resource type. Currently support: SF_FILE, SF_DIR,
SF_UNIX (unix socket), SF_PIPE, SF_UNKNOWN

1

path string Full path of the file/directory, or unique identifier for pipe, unix socket 1
con-
tainerId

string Unique string representing the Container Object to which the file resides.
Can be NULL if file isn’t in a container.

1

12 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

Events

Events represent important individual behaviors of an entity that are broken out on their own due to their importance,
their rarity, or because maintaining operation order is important. In order to manage events and their differing attributes,
we divide them into three different categories: Process, File, and Network events. These are described more in detail
later on.

Each event and flow contains a process object id, a timestamp, a thread id, and a set of operation flags. The process
object id represents the Process Entity on which the event occurred, while the thread id indicates which process thread
was associated with the event.

Operation Flags

The operation flags describe the actual behavior associated with the event (or flow). The flags are represented in a single
bitmap which enables multiple behaviors to be combined easily into a flow. An event will have a single bit active, while
a flow could have several. The current supported flags are as follows:

3.2. SysFlow Specification 13

SysFlow Telemetry Pipeline, Release 0.4

Operation Nu-
meric
ID

Description System Calls Evts/Flows
Supported

Since
(schema
version)

OP_CLONE (1 <<
0)

Process or thread cloned. clone() ProcessEvent 1

OP_EXEC (1 <<
1)

Execution of a file execve() ProcessEvent 1

OP_EXIT (1 <<
2)

Process or thread exit. exit() ProcessEvent 1

OP_SETUID (1 <<
3)

UID of process was changed setuid(), setresuid ProcessEvent 1

OP_SETNS (1 <<
4)

Process entering namespace setns() FileFlow 1

OP_ACCEPT(1 <<
5)

Process accepting network
connections

accept(), select() Network-
Flow

1

OP_CONNECT(1 <<
6)

Process connecting to remote
host or process

connect() Network-
Flow

1

OP_OPEN (1 <<
7)

Process opening a
file/resource

open(), openat(), cre-
ate()

FileFlow 1

OP_READ_RECV(1 <<
8)

Process reading from file, re-
ceiving network data

read(),pread(),recv(),recvfrom(),recvmsg()Network-
Flow, File-
Flow

1

OP_WRITE_SEND(1 <<
9)

Process writing to file, sending
network data

write(),pwrite(),send(),sendto(),sendmsg()Network-
Flow, File-
Flow

1

OP_CLOSE (1 <<
10)

Process close resource close(),socketshutdown Network-
Flow, File-
Flow

1

OP_TRUNCATE(1 <<
11)

Premature closing of a flow
due to exporter shutdown

N/A Network-
Flow, File-
Flow

1

OP_SHUTDOWN(1 <<
12)

Shutdown all or part of a full
duplex socket connection

shutdown() Network-
Flow

1

OP_MMAP (1 <<
13)

Memory map of a file. mmap() FileFlow 1

OP_DIGEST (1 <<
14)

Summary flow information for
long running flows

N/A Network-
Flow, File-
Flow

1

OP_MKDIR (1 <<
15)

Make directory mkdir(), mkdirat() FileEvent 1

OP_RMDIR (1 <<
16)

Remove directory rmdir() FileEvent 1

OP_LINK (1 <<
17)

Process creates hard link to ex-
isting file

link(), linkat() FileEvent 1

OP_UNLINK(1 <<
18)

Process deletes file unlink(), unlinkat() FileEvent 1

OP_SYMLINK(1 <<
19)

Process creates sym link to ex-
isting file

symlink(), symlinkat() FileEvent 1

OP_RENAME(1 <<
20)

File renamed rename(), renameat() FileEvent 1

14 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

Process Event

A Process Event is an event that creates or modifies a process in some way. Currently, we support four Process Events
(referred to as operations), and their behavior in SysFlow is described below.

Opera-
tion

Behavior

OP_CLONEExported when a new process or thread is cloned. A new Process Entity should be exported prior to
exporting the clone operation of a new process.

OP_EXEC Exported when a process calls an exec syscall. This event will modify an existing process, and should
be accompanied by a modified Process Entity.

OP_EXIT Exported on a process or thread exit.
OP_SETUIDExported when a process’s UID is changed. This event will modify an existing process, and should be

accompanied by a modified Process Entity.

The list of attributes for the Process Event are as follows:

Attribute Type Description Since (schema version)
OID: host
pidcreate ts

struct
int64int64

The OID of the process for which the event occurred. 1

timestamp
(ts)

int64 The timestamp when the event occurred (nanosec-
onds).

1

tid int64 The id of the thread associated with the ProcessEvent.
If the running process is single threaded tid == pid

1

opFlags int64 The id of the syscall associated with the event. See list
of Operation Flags for details.

1

args string[] An array of arguments encoded as string for the
syscall.

Sparingly implemented. Only
really used with setuid for now.

ret int64 Syscall return value. 1

File Event

A File Event is an event that creates, deletes or modifies a File Entity. Currently, we support six File Events (referred
to as operations), and their behavior in SysFlow is described below.

Operation Behavior
OP_MKDIR Exported when a new directory is created. Should be accompanied by a new File Entity representing

the directory
OP_RMDIR Exported when a directory is deleted.
OP_LINK Exported when a process creates a hard link to an existing file. Should be accompanied by a new File

Entity representing the new link.
OP_UNLINK Exported when a process deletes a file.
OP_SYMLINKExported when a process creates a sym link to an existing file. Should be accompanied by a new File

Entity representing the new link.
OP_RENAMEExported when a process creates renames an existing file. Should be accompanied by a new File

Entity representing the renamed file.

NOTE: We’d like to also support chmod and chown but these two operations are not fully supported
in sysdig. We’d also like to support umount and mount but these operations are not implemented. We

3.2. SysFlow Specification 15

SysFlow Telemetry Pipeline, Release 0.4

anticipate supporting these in a future version.

The list of attributes for the File Event are as follows:

At-
tribute

Type Description Since
(schema
ver-
sion)

OID:
host
pidcreate
ts

struct
int64int64

The OID of the process for which the event occurred. 1

times-
tamp
(ts)

int64 The timestamp when the event occurred (nanoseconds). 1

tid int64 The id of the thread associated with the FileEvent. If the running process is single
threaded tid == pid

1

opFlags int64 The id of the syscall associated with the event. See list of Operation Flags for details. 1
ret int64 Syscall return value. 1
FOID: string

(128bit)
The id of the file on which the system call was called. File Identifier, is a SHA1 hash
of the concatenation of the path + container ID.

1

New-
FOID:

string
(128bit)

Some syscalls (link, symlink, etc.) convert one file into another requiring two files.
This id is the id of the file secondary or new file on which the system call was called.
File Identifier, is a SHA1 hash of the concatenation of the path + container ID. Can
be NULL.

1

Network Event

Currently, not implemented.

K8s Event

A k8s Event is an event that records Kubernetes event information.

Attribute Type Description Since (schema version)
timestamp (ts) int64 The timestamp when the event occurred (nanoseconds). 4
kind int64 The type of k8s event 1
action int64 The action associated with the k8s event 4
message string[] The detailed k8s event payload or message 4

16 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

Flows

A Flow represents an aggregation of multiple events that naturally fit together to describe a particular behavior. They
are designed to reduce data and collect statistics. Examples of flows include an application reading or writing to a file,
or sending and receiving data from another process or host. Flows represent a number of events occurring over a period
of time, and as such each flow has a set of operations (encoded in a bitmap), a start and an end time. One can determine
the operations in the flow by decoding the operation flags.

A flow can be started by any supported operation and are exported in one of two ways. First, they are exported on
an exit, or close event signifying the end of a connection, file interaction, or process. Second, a long running flow
is exported after a preconfigured time period. After a long running flow is exported, its counters and flags are reset.
However, if there is no activity on the flow over a preconfigured period of time, that flow is no longer exported.

In this section, we describe three categories of Flows: Process, File and Network Flows.

Process Flow

A Process Flow represents a summarization of the number of threads created and destroyed over a time period. Process
Flows are partially implemented in the collector and will be fully implemented in a future release. Since schema version
2. Currently we support the following operations:

Operation Behavior
OP_CLONE Recorded when a new thread is cloned.
OP_EXIT Recorded on a thread exit.

The list of attributes for the Process Flow are as follows:

Attribute Type Description Since (schema
version)

OID: host
pidcreate ts

struct
int64int64

The OID of the process for which the flow occurred. 2

timestamp (ts) int64 The timestamp when the flow starts (nanoseconds). 2
numThread-
sCloned

int64 The number of threads cloned during the duration of the flow. 2

opFlags int64
(bitmap)

The id of one or more syscalls associated with the ProcessFlow.
See list of Operation Flags for details.

2

endTs int64 The timestamp when the process flow is exported (nanoseconds). 2
numThread-
sExited

int64 Number of threads exited during the duration of the flow. 2

numCloneEr-
rors

int64 Number of clone errors occuring during the duration of the flow. 2

3.2. SysFlow Specification 17

SysFlow Telemetry Pipeline, Release 0.4

File Flow

A File Flow represents a collection of operations on a file. Currently we support the following operations:

Operation Behavior
OP_SETNS Process entering namespace entry in mounted file related to reference File Entity
OP_OPEN Process opening a file/resource.
OP_READ_RECV Process reading from file/resource.
OP_WRITE_SEND Process writing to file.
OP_MMAP Processing memory mapping a file.
OP_CLOSE Process closing resource. This action will close corresponding FileFlow.
OP_TRUNCATE Indicates Premature closing of a flow due to exporter shutdown.
OP_DIGEST Summary flow information for long running flows (not implemented).

The list of attributes for the File Flow are as follows:

Attribute Type Description Since
(schema
version)

OID: host
pidcreate ts

struct
int64int64

The OID of the process for which the flow occurred. 1

timestamp
(ts)

int64 The timestamp when the flow starts (nanoseconds). 1

tid int64 The id of the thread associated with the flow. If the running process is
single threaded tid == pid

1

opFlags int64
(bitmap)

The id of one or more syscalls associated with the FileFlow. See list of
Operation Flags for details.

1

openFlags int64 Flags associated with an open syscall if present. 1
endTs int64 The timestamp when the file flow is exported (nanoseconds). 1
FOID: string

(128bit)
The id of the file on which the system call was called. File Identifier, is
a SHA1 hash of the concatenation of the path + container ID.

1

fd int32 The file descriptor associated with the flow. 1
numR-
RecvOps

int64 Number of read operations performed during the duration of the flow. 1

numWSendOpsint64 Number of write operations performed during the duration of the flow. 1
numR-
RecvBytes

int64 Number of bytes read during the duration of the flow. 1

numWSend-
Bytes

int64 Number of bytes written during the duration of the flow. 1

Network Flow

A Network Flow represents a collection of operations on a network connection. Currently we support the following
operations:

18 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

Operation Behavior
OP_ACCEPT Process accepted a new network connection.
OP_CONNECT Process connected to a remote host or process.
OP_READ_RECV Process receiving data from a remote host or process.
OP_WRITE_SEND Process sending data to a remote host or process.
OP_SHUTDOWN Process shutdown full or single duplex connections.
OP_CLOSE Process closing network connection. This action will close corresponding NetworkFlow.
OP_TRUNCATE Indicates Premature closing of a flow due to exporter shutdown.
OP_DIGEST Summary flow information for long running flows (not implemented).

The list of attributes for the Network Flow are as follows:

Attribute Type Description Since (schema
version)

OID: host
pidcreate ts

struct
int64int64

The OID of the process for which the flow occurred. 1

timestamp (ts) int64 The timestamp when the flow starts (nanoseconds). 1
tid int64 The id of the thread associated with the flow. If the running

process is single threaded tid == pid
1

opFlags int64
(bitmap)

The id of one or more syscalls associated with the flow. See list
of Operation Flags for details.

1

endTs int64 The timestamp when the flow is exported (nanoseconds). 1
sip int32 The source IP address. 1
sport int16 The source port. 1
dip int32 The destination IP address. 1
dport int16 The destination port. 1
proto enum The network protocol of the flow. Can be: TCP, UDP, ICMP,

RAW
1

numR-
RecvOps

int64 Number of receive operations performed during the duration of
the flow.

1

numWSendOps int64 Number of send operations performed during the duration of
the flow.

1

numR-
RecvBytes

int64 Number of bytes received during the duration of the flow. 1

numWSend-
Bytes

int64 Number of bytes sent during the duration of the flow. 1

NOTE The current implementation of NetworkFlow only supports ipv4.

3.3 LibSysFlow

LibSysFlow is a library for creating SysFlow consumers. It defines a concise API and export first-class SysFlow data
types for consumers to transparently process SysFlow records and manage access to the underlying Falco libs and driver.

The main interface accepts a config object in which a callback function can be set to process SysFlow records. The
config option sets optimal defaults that can be customized by the consumer. The library is packaged as a static (.a)
library and distributed as an rpm/deb/tgz artifact with sf-collector releases (both glibc and musl flavors are available).

Additionally, libsysflow performs the checks to verify that the Falco driver is loaded and outputs an exception other-
wise. Consumers load the Falco libs driver prior to running their main entrypoint, following the typical entrypoint
recipe/script used by Falco and the SysFlow Collector.

3.3. LibSysFlow 19

SysFlow Telemetry Pipeline, Release 0.4

3.3.1 Basic Usage

Below is a minumum example of a SysFlow consumer that uses LibSysFlow. A more complete example can be found
here. The SysFlow Collector also uses LibSysFlow and serves as a reference implementation for library consumers.

// consumer-defined callback function
void process_sysflow(sysflow::SFHeader* header, sysflow::Container* cont,␣
→˓sysflow::Process* proc, sysflow::File* f1, sysflow::File* f2, sysflow::SysFlow* rec) {
// your switch block here

}

// example consumer
int main(int argc, char **argv) {

SysFlowConfig* config = sysflowlibscpp::InitializeSysFlowConfig();
config->callback = process_sysflow;
sysflowlibscpp::SysFlowDriver *driver = new sysflowlibscpp::SysFlowDriver(config);
driver->run();

}

3.3.2 Public API

The public interface for the SysFlow libs offers two objects: SysFlowConfig and SysFlowDriver.

SysFlowConfig

The SysFlowConfig object is a struct, which contains all settings for the libs and must be passed into the
SysFlowDriver constructor. A more detailed description of the configuration settings for SysFlowConfig can be
found in Advanced Usage.

Method Description
SysFlowConfig *sysflowlib-
scpp::InitializeSysFlowConfig()

Initializes the configuration object with a set of default
values

SysFlowDriver

The SysFlowDriver object is the main object for collecting and exporting SysFlow data. The driver also supports
system call ingestion from the following sources: SCAP file, kernel module (live), and ebpf probe (live). Configurations
for file ingestion are currently set by the SysFlowConfig object. For live capture, the kernel module is loaded by
default; however, one can use the ebpf probe by currently exporting the FALCO_BPF_PROBE environment variable
(e.g., export FALCO_BPF_PROBE="") before launching the binary. Note that probes are launched by running the
falco-driver-loader script described below. Finally, the driver offers a collection mode option, which determines
which system calls are collected. See the collectionMode attribute in the Configuration section below for more
details. The driver currently supports three export options: to avro encoded file, over unix domain socket, and call to
user-defined callback function (see example above). Export options are configured using the SysFlowConfig option.

20 Chapter 3. License

https://github.com/sysflow-telemetry/sf-collector/tree/dev/examples/callback.cpp
https://github.com/sysflow-telemetry/sf-collector/tree/dev/src/collector

SysFlow Telemetry Pipeline, Release 0.4

Method Description
SysFlow-
Driver(sysflowlibscpp::SysFlowConfig
*config

Driver constructor configures the driver based on the settings in the SysFlowCon-
fig object.Note: the constructor can throw a SysFlowException.

virtual ~SysFlowDriver() Driver destructor
void exit() Stops the driver data collection and export. Typically called within a signal han-

dler
int run() Blocking function that runs the main collection loop. Note: can throw a Sys-

FlowException. Returns 0 on successful completion.
std::string getVersion() returns a string representing the version number of the libraries

3.3.3 Installation

Binary packages (deb, rpm, tgz) for glibc- and musl-based build pipelines are available in the collector’s release assets
(since release $VERSION >=0.5.0). This is going to install libSysFlow headers and the static libraries (.a) needed to
link your application.

Debian

Install build pre-requisites:

apt install -y make wget g++ libboost-iostreams-dev flex bison gawk libsparsehash-dev

Download the libSysFlow package:

wget https://github.com/sysflow-telemetry/sf-collector/releases/download/$VERSION/
→˓libsysflow-$VERSION-x86_64.deb

Install the libSysFlow package:

dpkg -i libsysflow-$VERSION-x86_64.deb

Note A deb package for musl builds is also available.

RPM

Install pre-requisites (Instructions for Rhel8 below):

subscription-manager repos --enable="codeready-builder-for-rhel-8-$(/bin/arch)-rpms"
dnf -y update
dnf -y install make wget gcc gcc-c++ glibc-static libstdc++-static flex bison boost-
→˓static sparsehash-devel

Download the libSysFlow package:

wget https://github.com/sysflow-telemetry/sf-collector/releases/download/$VERSION/
→˓libsysflow-$VERSION-x86_64.rpm

Install the libSysFlow package:

3.3. LibSysFlow 21

https://github.com/sysflow-telemetry/sf-collector/releases

SysFlow Telemetry Pipeline, Release 0.4

rmp -i libsysflow-$VERSION-x86_64.rpm sfprocessor-$VERSION-x86_64.rpm

Note An rpm package for musl builds is also available.

Alpine (musl)

Install pre-requisites:

apk add make g++ boost-dev boost-static flex bison gawk sparsehash

Download the libSysFlow package:

wget https://github.com/sysflow-telemetry/sf-collector/releases/download/$VERSION/
→˓libsysflow-$VERSION-x86_64.tgz

Install the libSysFlow package:

tar xzf libsysflow-musl-${SYSFLOW_VERSION}-x86_64.tar.gz && cp -r libsysflow-musl-$
→˓{SYSFLOW_VERSION}-x86_64/usr/* /usr/.

3.3.4 Compilation

After installation, you should have the following directory structure installed in your environment:

/usr/bin/docker-entrypoint.sh
/usr/bin/falco-driver-loader
/usr/include/falcosecurity
/usr/include/sysflow
/usr/lib/falcosecurity
/usr/lib/sysflow
/usr/src/dkms
/usr/src/falco-$FALCO_LIBS_VERSION

The include and lib directories contain the header files and static libraries that should be used to build a Sys-
Flow consumer. docker-entrypoint.sh is provided for container-based deployments of the consumer, and the
falco-driver-loader is the script used to load the kmod/bpf drivers. dkms sources are provided as a convenience
and not required for compilation, and can be used to install dkms in case it’s not available in the target environment.
Similarly, we package the Falco driver sources in /usr/src/falco-$FALCO_LIBS_VERSION to enable local compi-
lation of the drivers when these are not available or accessible in the remote driver repository.

The Makefile in the example application shows the LDFLAGS and CFLAGS needed to build a libSysFlow consumer, and
provides an example of how to enable glibc and musl (static) builds.

22 Chapter 3. License

https://github.com/sysflow-telemetry/sf-collector/blob/dev/examples/Makefile

SysFlow Telemetry Pipeline, Release 0.4

3.3.5 Advanced Usage

Configuration

The library configuration parameters are assigned defaults that should work well in most scenarios. They can be
customized using the SysFlowConfig object.

3.3. LibSysFlow 23

SysFlow Telemetry Pipeline, Release 0.4

Field Type Description De-
fault

filter-
Con-
tain-
ers

bool Filter out all events related to containers false

ro-
tateIn-
terval

int Set rotation interval in secs which dictates how often a SysFlow header is emitted. Used for
file rotations and also to clean caches to prevent leakages

300

ex-
por-
terID

string ID for the host

nodeIP string IP for the host/node
filePath string SysFlow output file path. If path ends with a ‘/’, this will be treated as a directory. If treated

as directory, the name of the sysflow file will be a timestamp, and will be rotated every N
seconds depending on the rotateInterval. If no ‘/’ at end, and rotateInterval is set, path is
treated as a file prefix, and timestamp is concatenated. Set NULL if not using file output.

sock-
et-
Path

string SysFlow unix socket file path. Typically used in conjunction with the SysFlow processor to
stream SysFlow over a socket. Set NULL if not using socket streaming

scap-
In-
put-
Path

string Scap input file path. Used in offline mode to read from raw scap rather than tapping the
kernel. Set NULL if using live kernel collection

fal-
coFil-
ter

string String to set Falco-style filter on events being passed from the falco libs, to the SysFlow
library

sam-
plin-
gRa-
tio

string Sampling ratio used to determine which system calls to drop in the probe 1

criPath string CRI-O runtime socket path, needed for monitoring cri-o/containered container runtimes such
as k8s and OCP

criTO int CRI-O timeout. Timeout in secs set when querying CRI-O socket for container metadata 30
en-
ableStats

bool Enable Process Flow collection. Output Process Flow rather than individual thread clones false

en-
ablePro-
cess-
Flow

bool Only output File Flows and Events related to file objects. Ignoring pipes, for example. true

fileOnly bool Only output File Flows and Events related to file objects. Ignoring pipes, for example. true
fil-
eRead-
Mode

int Set the file mode to determine which types of file related read flows are ignored to reduce
event output. sets mode for reads: “0” enables recording all file reads as flows. “1” disables
all file reads. “2” disables recording file reads to noisy directories: “/proc/”, “/dev/”, “/sys/”,
“//sys/”, “/lib/”, “/lib64/”, “/usr/lib/”, “/usr/lib64/”

2

drop-
Mode

bool Drop mode removes syscalls inside the kernel before they are passed up to the collector results
in much better performance, less drops, but does remove mmaps from output.

true

call-
back

Sys-
Flow-
Call-
back

Callback function, required for when using a custom callback function for SysFlow process-
ing

de-
bug-
Mode

bool Debug mode turns on debug logging inside libsinsp false

k8sAPIURLstring K8s API URL used to retrieve K8s state and K8s events (experimental)
k8sAPICertstring Path to K8s API Certificate (experimental)
mod-
uleChecks

bool Run added module checks for better error checking true

col-
lec-
tion-
Mode

enum Has three possible values: 1.) SFFlowMode for SysFlow mode which does full SysFlow
collection as described in the spec. 2.) SFConsumerMode removes collection of read, write
and close operations for FileFlows. 3.) SFNoFiles drops file flows and file events. The
latter two options are a lighterweight collection mode for systems where CPU or drop issues
may occur

SFFlowMode

app-
Name

string Sets the calling application name for logging purposes. sysflowlibs

sin-
gle-
Buffer-
Di-
men-
sion

int This is the dimension that a single buffer in our drivers will have (BPF, kmod, modern BPF)
Please note: This number is expressed in bytes. This number must be a multiple of your
system page size, otherwise the allocation will fail. If you leave 0, every driver will set its
internal default dimension.

0

24 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

Exception Handling

The library exposes an exception class that contains error code that can be used by SysFlow consumers for logging and
troubleshooting.

SysFlowException(std::string message);
SysFlowException(std::string message, SysFlowError code)

: std::runtime_error(message), m_code(code) {}
SysFlowError getErrorCode() { return m_code; }

The error codes are defined in an enum, as follows.

enum SysFlowError {
LibsError,
ProbeAccessDenied,
ProbeNotExist,
ErrorReadingFileSystem,
NameTooLong,
ProbeCheckError,
ProbeNotLoaded,
DriverLibsMismatch,
EventParsingError,
ProcResourceNotFound,
OperationNotSupported

};

Logging

LibSysFlow uses Glog for logging.

You can specify one of the following severity levels (in increasing order of severity): INFO, WARNING, ERROR.

You can also add verbose logging when you are chasing difficult bugs. LibSysFlow has two levels of verbose logging:
1 (DEBUG) and 2 (TRACE).

To control logging behavior, you can set flags via environment variables, prefixing the flag name with “GLOG”, e.g.

GLOG_logtostderr=1 ./your_application

The following flags are most commonly used:

• logtostderr (bool, default=false): Log messages to stderr instead of logfiles.

• stderrthreshold (int, default=2, which is ERROR): Copy log messages at or above this level to stderr in addition to
logfiles. The numbers of severity levels INFO, WARNING, ERROR, and FATAL are 0, 1, 2, and 3, respectively.

• minloglevel (int, default=0, which is INFO): Log messages at or above this level. Again, the numbers of severity
levels INFO, WARNING, ERROR, and FATAL are 0, 1, 2, and 3, respectively.

• log_dir (string, default=””): If specified, logfiles are written into this directory instead of the default logging
directory.

• v (int, default=0): Show all VLOG(m) messages for m less or equal the value of this flag. Overridable by
–vmodule. See the section about verbose logging for more detail.

• vmodule (string, default=””): Per-module verbose level. The argument has to contain a comma-separated list of
=. is a glob pattern (e.g., gfs* for all modules whose name starts with “gfs”), matched against the filename base
(that is, name ignoring .cc/.h./-inl.h). overrides any value given by –v.

3.3. LibSysFlow 25

https://github.com/google/glog
https://github.com/google/glog

SysFlow Telemetry Pipeline, Release 0.4

Note You can set binary flags to true by specifying 1, true, or yes (case insensitive). Also, you can set
binary flags to false by specifying 0, false, or no (again, case insensitive).

3.4 SysFlow Collector (sf-collector repo)

The SysFlow Collector monitors and collects system call and event information from hosts and exports them in the
SysFlow format using Apache Avro object serialization. It’s built atop libSysFlow, a library that lifts system call
information into SysFlow, a higher order object relational format that models how containers, processes and files interact
with their environment through process control flow, file, and network operations. Learn more about SysFlow in the
SysFlow Specification Document.

The SysFlow Collector builds on the CNCF Falco libs to passively collect system events and turn them into SysFlow.
As a result, the collector supports the libs’ powerful filtering capabilities. Check the build and installation instructions
for installing the collector.

3.4.1 Build

Cloning sources

This document describes how to build libSysFlow and run the SysFlow Collector both inside a docker container and on
a linux host. Binary packages are also available in the deployments repository. Building and running the application
inside a docker container is the easiest way to start. For convenience, skip the build step and pull pre-built images
directly from Docker Hub.

To build the project, first clone the repository:

git clone --recursive https://github.com/sysflow-telemetry/sf-collector.git

Manifest

The manifest file contains the metadata and versions of dependencies used to build libSysFlow and the Collector. It
can be modified to customize the build to specifc package versions.

Building using Docker

This is the simplest way of reliably building the collector. To build using docker, run:

make build

Note A musl build can be triggered using the build/musl target instead.

If this is your first time building the collector, run the build task in the background and go grab a coffee :) If you have
cores to spare, the build time can be reduced by setting concurrent make jobs. For example,

make MAKE_JOBS=8 build

During the initial build, a number of base images are created. These are only needed once per dependency version set.
Pre-built versions of these images are also available in Docker Hub and GHCR.

26 Chapter 3. License

https://sysflow.readthedocs.io/en/dev/libs.html
https://github.com/falcosecurity/libs
https://github.com/sysflow-telemetry/sf-deployments
https://hub.docker.com/r/sysflowtelemetry/sf-collector
https://github.com/sysflow-telemetry/sf-collector/makefile.manifest.inc
https://hub.docker.com/u/sysflowtelemetry
https://github.com/orgs/sysflow-telemetry/packages?repo_name=sf-collector

SysFlow Telemetry Pipeline, Release 0.4

Image Tag Description Dockerfile
ghcr.io/sysflow-
telemetry/ubi

base-
--

A UBI base image containing the build dependencies for Falco and
libSysFlow

Docker-
file.ubi.amd64

mods-
--

A UBI base image containing the pre-installed Falco Libs and tools
for building libSysFlow

Docker-
file.ubi.amd64

driver-
--

A UBI base image containing the Falco driver loader and container
entrypoint for creating the SysFlow Collector released image

Docker-
file.driver.amd64

ghcr.io/sysflow-
telemetry/sf-
collector

libs- A UBI base image containing libSysFlow Dockerfile

collector-A UBI base image containing the SysFlow Collector Dockerfile

The SysFlow Collector image Dockerfile

If building using musl, the following images are created instead.

Image Tag Description Dockerfile
ghcr.io/sysflow-
telemetry/alpine

base-
--

An Alpine base image containing the musl build dependencies for
Falco and libSysFlow

Docker-
file.alpine.amd64

mods-
--

An Alpine base image containing the pre-installed Falco Libs and
tools for building a musl-based libSysFlow

Docker-
file.alpine.amd64

ghcr.io/sysflow-
telemetry/ubi

driver-
--

A UBI base image containing the Falco driver loader and container
entrypoint for creating the SysFlow Collector released image

Docker-
file.driver.amd64

ghcr.io/sysflow-
telemetry/sf-
collector-musl

libs- An Alpine base image containing musl-based libSysFlow Docker-
file.musl

collector-An Alpine base image containing the musl-based SysFlow Collec-
tor

Docker-
file.musl

The musl-based SysFlow Collector image Docker-
file.musl

Building directly on a host

First, install required dependencies.

On Rhel-based hosts:

scripts/installUBIDependency.sh

On Debian-based hosts:

apt install -y patch base-files binutils bzip2 libdpkg-perl perl make xz-utils␣
→˓libncurses5-dev libncursesw5-dev cmake libboost-all-dev g++ flex bison wget libelf-dev␣
→˓liblog4cxx-dev libapr1 libaprutil1 libsparsehash-dev libsnappy-dev libgoogle-glog-dev␣
→˓libjsoncpp-dev

To build the collector:

make

3.4. SysFlow Collector (sf-collector repo) 27

https://github.com/sysflow-telemetry/sf-collector/Dockerfile.ubi.amd64
https://github.com/sysflow-telemetry/sf-collector/Dockerfile.ubi.amd64
https://github.com/sysflow-telemetry/sf-collector/Dockerfile.ubi.amd64
https://github.com/sysflow-telemetry/sf-collector/Dockerfile.ubi.amd64
https://github.com/sysflow-telemetry/sf-collector/Dockerfile.driver.amd64
https://github.com/sysflow-telemetry/sf-collector/Dockerfile.driver.amd64
https://github.com/sysflow-telemetry/sf-collector/Dockerfile
https://github.com/sysflow-telemetry/sf-collector/Dockerfile
https://github.com/sysflow-telemetry/sf-collector/Dockerfile
https://github.com/sysflow-telemetry/sf-collector/Dockerfile.alpine.amd64
https://github.com/sysflow-telemetry/sf-collector/Dockerfile.alpine.amd64
https://github.com/sysflow-telemetry/sf-collector/Dockerfile.alpine.amd64
https://github.com/sysflow-telemetry/sf-collector/Dockerfile.alpine.amd64
https://github.com/sysflow-telemetry/sf-collector/Dockerfile.driver.amd64
https://github.com/sysflow-telemetry/sf-collector/Dockerfile.driver.amd64
https://github.com/sysflow-telemetry/sf-collector/Dockerfile.musl
https://github.com/sysflow-telemetry/sf-collector/Dockerfile.musl
https://github.com/sysflow-telemetry/sf-collector/Dockerfile.musl
https://github.com/sysflow-telemetry/sf-collector/Dockerfile.musl
https://github.com/sysflow-telemetry/sf-collector/Dockerfile.musl
https://github.com/sysflow-telemetry/sf-collector/Dockerfile.musl

SysFlow Telemetry Pipeline, Release 0.4

Binary Packaging

You can easily package libSysFlow and the Collector using cpack. The deb, rpm, and tgz packages are generated in
the sctrips/cpack directory.

To package libSysFlow headers and static libraries, run:

make build
make package-libs

To package a musl-based libSysFlow headers and static libraries, run:

make build/musl
make package-libs/musl

To package the SysFlow collector and its systemd service specification, run:

make build/musl
make package

3.4.2 Running

Command line usage

To list command line options for the collector, run:

sysporter -h

Examples

To convert scap files to SysFlow traces with an export id. The output will be written to output.sf.

sysporter -r input.scap -w ./output.sf -e host

Trace a system live, and output SysFlow to files in a directory which are rotated every 30 seconds. The file name will
be an epoch timestamp of when the file was initially written. Note that the trailing slash must be present. The example
filter ensures that only SysFlow from containers is generated.

sysporter -G 30 -w ./output/ -e host -f "container.type!=host and container.type=docker"

Trace a system live, and output SysFlow to files in a directory which are rotated every 30 seconds. The file name will
be an output.<epoch timestamp> where the timestamp is of when the file was initially written. The example filter
ensures that only SysFlow from containers is generated.

sysporter -G 30 -w ./output/output -e host -f "container.type!=host and container.
→˓type=docker" </code>`

28 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

Docker usage

The easiest way to run the SysFlow collector is from a Docker container, with host mount for the output trace files. The
following command shows how to run sf-collector with trace files exported to /mnt/data on the host.

docker run -d --privileged --name sf-collector \
-v /var/run/docker.sock:/host/var/run/docker.sock \
-v /dev:/host/dev \
-v /proc:/host/proc:ro \
-v /boot:/host/boot:ro \
-v /lib/modules:/host/lib/modules:ro \
-v /usr:/host/usr:ro \
-v /etc/:/host/etc:ro \
-v /var/lib/:/host/var/lib:ro \
-v /mnt/data:/mnt/data \
-e INTERVAL=60 \
-e EXPORTER_ID=${HOSTNAME} \
-e OUTPUT=/mnt/data/ \
-e FILTER="container.name!=sf-collector and container.name!=sf-processor and␣

→˓container.name!=sf-exporter" \
--rm sysflowtelemetry/sf-collector

where INTERVAL denotes the time in seconds before a new trace file is generated, EXPORTER_ID sets the exporter name,
OUTPUT is the directory in which trace files are written, and FILTER is the filter expression used to filter collected events.
The collector can also be setup to stream events through a unix domain socket (see sf-deployments for other deployment
configurations).

Note append container.type!=host to FILTER expression to filter host events.

The key setting in the collector configuration is the FILTER variable. The collector is built atop the Falco libs and
it uses Falco’s filtering mechanism described here. It supports filtering on specific containers, processes, operations,
etc. One of the most powerful filters is the container.type!=host filter, which limits collection only to container
monitoring. If you want to monitor the entire host, simply remove the container.type operation from the filter.

3.4.3 Event rate optimization

The following environment variables can be set to reduce the number of events generated by the collector:

• Drop mode (ENABLE_DROP_MODE=1): removes syscalls inside the kernel before they are passed up to the collec-
tor, resulting in much better performance, less spilled events, but does remove mmaps from output.

• Process flows (ENABLE_PROC_FLOW=1): enables the creation of process flows, aggregating thread events.

• File only (FILE_ONLY=1): filters out any descriptor that is not a file, including unix sockets and pipes

• File read mode (FILE_READ_MODE=1): sets mode for file reads. 0 enables recording all file reads as flows. 1
disables all file reads. 2 disables recording file reads to noisy directories: “/proc/”, “/dev/”, “/sys/”, “//sys/”,
“/lib/”, “/lib64/”, “/usr/lib/”, “/usr/lib64/”.

3.4. SysFlow Collector (sf-collector repo) 29

https://github.com/sysflow-telemetry/sf-deployments
https://github.com/falcosecurity/libs/
https://falco.org/docs/rules/supported-fields/

SysFlow Telemetry Pipeline, Release 0.4

3.5 SysFlow Processor (sf-processor repo)

The SysFlow processor is a lighweight edge analytics pipeline that can process and enrich SysFlow data. The processor
is written in golang, and allows users to build and configure various pipelines using a set of built-in and custom plugins
and drivers. Pipeline plugins are producer-consumer objects that follow an interface and pass data to one another
through pre-defined channels in a multi-threaded environment. By contrast, a driver represents a data source, which
pushes data to the plugins. The processor currently supports two builtin drivers, including one that reads sysflow from
a file, and another that reads streaming sysflow over a domain socket. Plugins and drivers are configured using a JSON
file.

A core built-in plugin is a policy engine that can apply logical rules to filter, alert, or semantically label sysflow records
using a declarative language based on the Falco rules syntax with a few added extensions (more on this later).

Custom plugins and drivers can be implemented as dynamic libraries to tailor analytics to specific user requirements.

The endpoint of a pipeline configuration is an exporter plugin that sends the processed data to a target. The processor
supports various types of export plugins for a variety of different targets.

3.5.1 Pre-requisites

The processor has been tested on Ubuntu/RHEL distributions, but should work on any Linux system.

• Golang version 1.17+ and make (if building from sources)

• Docker, docker-compose (if building with docker)

3.5.2 Build

Clone the processor repository

git clone https://github.com/sysflow-telemetry/sf-processor.git

Build locally, from sources

cd sf-processor
make build

Build with docker

cd sf-processor
make docker-build

3.5.3 Usage

For usage information, type:

cd driver/
./sfprocessor -help

This should yield the following usage statement:

30 Chapter 3. License

https://falco.org/docs/rules/

SysFlow Telemetry Pipeline, Release 0.4

Usage: sfprocessor [[-version]|[-driver <value>] [-log <value>] [-driverdir <value>] [-
→˓plugdir <value>] path]
Positional arguments:
path string

Input path
Arguments:
-config string

Path to pipeline configuration file (default "pipeline.json")
-cpuprofile file

Write cpu profile to file
-driver string

Driver name {file|socket|<custom>} (default "file")
-driverdir string

Dynamic driver directory (default "../resources/drivers")
-log string

Log level {trace|info|warn|error} (default "info")
-memprofile file

Write memory profile to file
-plugdir string

Dynamic plugins directory (default "../resources/plugins")
-test

Test pipeline configuration
-traceprofile file

Write trace profile to file
-version

Output version information

The four most important flags are config, driverdir, plugdir, and driver. The config flag points to a pipeline
configuration file, which describes the entire pipeline and settings for the individual settings for the plugins. The
driverdir and plugdir flags specify where any dynamic drivers and plugins shared libraries reside that should be
loaded by the processor at runtime. The driver flag accepts a label to a pre-configured driver (either built-in or custom)
that will be used as the data source to the pipeline. Currently, the pipeline only supports one driver at a time, but we
anticipate handling multiple drivers in the future. There are two built-in drivers:

• file: loads a sysflow file reading driver that reads from path.

• socket: the processor loads a sysflow streaming driver. The driver creates a domain socket named path and acts
as a server waiting for a SysFlow collector to attach and send sysflow data.

3.5.4 Configuration

The pipeline configuration below shows how to configure a pipeline that will read a sysflow stream and push records
to the policy engine, which will trigger alerts using a set of runtime policies stored in a yaml file. An example pipeline
with this configuration looks as follows:

{
"pipeline":[
{
"processor": "sysflowreader",
"handler": "flattener",
"in": "sysflow sysflowchan",
"out": "flat flattenerchan"
},

(continues on next page)

3.5. SysFlow Processor (sf-processor repo) 31

SysFlow Telemetry Pipeline, Release 0.4

(continued from previous page)

{
"processor": "policyengine",
"in": "flat flattenerchan",
"out": "evt eventchan",
"policies": "../resources/policies/runtimeintegrity"
},
{
"processor": "exporter",
"in": "evt eventchan",
"export": "syslog",
"proto": "tcp",
"tag": "sysflow",
"host": "localhost",
"port": "514"
}

]
}

NOTE: This configuration can be found in: sf-collector/resources/pipelines/pipeline.
syslog.json

This pipeline specifies three built-in plugins:

• sysflowreader: is a generic reader plugin that ingests sysflow from the driver, caches entities, and presents sysflow
objects to a handler object (i.e., an object that implements the handler interface) for processing. In this case, we
are using the flattener handler, but custom handlers are possible.

• policyengine: is the policy engine, which takes flattened (row-oriented) SysFlow records as input and outputs
records, which represent alerts, or filtered sysflow records depending on the policy engine’s mode (more on this
later).

• exporter: takes records from the policy engine, and exports them to ElasticSearch, syslog, file, or terminal, in a
JSON format or in Elastic Common Schema (ECS) format. Note that custom export plugins can be created to
export to other serialization formats and transport protocols.

Each plugin has a set of general attributes that are present in all plugins, and a set of attributes that are custom to the
specific plugins. For more details on the specific attributes in this example, see the pipeline configuration template

The general attributes are as follows:

• processor (required): the name of the processor plugin to load. Processors must implement the SFProcessor
interface; the name is the value that must be returned from the GetName() function as defined in the processor
object.

• handler (optional): the name of the handler object to be used for the processor. Handlers must implement the
SFHandler interface.

• in (required): the input channel (i.e. golang channel) of objects that are passed to the plugin.

• out (optional): the output channel (i.e. golang channel) for objects that are pushed out of the plugin, and into the
next plugin in the pipeline sequence.

Channels are modelled as channel objects that have an In attribute representing some golang channel of objects. See
SFChannel for an example. The syntax for a channel in the pipeline is [channel name] [channel type]. Where
channel type is the label given to the channel type at plugin registration (more on this later), and channel name is a
unique identifier for the current channel instance. The name and type of an output channel in one plugin must match
that of the name and type of the input channel of the next plugin in the pipeline sequence.

32 Chapter 3. License

https://github.com/sysflow-telemetry/sf-processor/blob/master/core/processor/processor.go
https://github.com/sysflow-telemetry/sf-apis/blob/master/go/plugins/handler.go
https://github.com/sysflow-telemetry/sf-processor/blob/master/core/flattener/flattener.go
https://github.com/sysflow-telemetry/sf-processor/blob/master/core/policyengine/policyengine.go
https://github.com/sysflow-telemetry/sf-apis/blob/master/go/sfgo/flatrecord.go
https://github.com/sysflow-telemetry/sf-processor/blob/master/core/policyengine/engine/types.go
https://github.com/sysflow-telemetry/sf-processor/blob/master/core/exporter/exporter.go
https://github.com/sysflow-telemetry/sf-processor/blob/master/driver/pipeline.template.json
https://github.com/sysflow-telemetry/sf-apis/blob/master/go/plugins/processor.go
https://github.com/sysflow-telemetry/sf-apis/blob/master/go/plugins/handler.go
https://github.com/sysflow-telemetry/sf-apis/blob/master/go/plugins/processor.go

SysFlow Telemetry Pipeline, Release 0.4

NOTE: A plugin has exacly one input channel but it may specify more than one output channels. This
allows pipeline definitions that fan out data to more than one receiver plugin similar to a Unix tee com-
mand. While there must be always one SysFlow reader acting as the entry point of a pipeline, a pipeline
configuration may specify policy engines passing data to different exporters or a SysFlow reader passing
data to different policy engines. Generally, pipelines form a tree rather being a linear structure.

Policy engine configuration

The policy engine ("processor": "policyengine") plugin is driven by a set of rules. These rules are specified in
a YAML file which adopts the same syntax as the rules of the Falco project. A policy engine plugin specification may
have the following attributes:

• policies (required for alert mode`): The path to the YAML rules specification file. More information on rules
can be found in the Policies section.

• mode (optional): The mode of the policy engine. Allowed values are:

– alert (default): the policy engine generates rule-based alerts; alert is a blocking mode that drops all
records that do not match any given rule. If no mode is specified, the policy engine runs in alert mode
by default.

– enrich for enriching records with additional context from the rule. In contrast to alert, this is a non-
blocking mode which applies tagging and action enrichments to matching records as defined in the policy
file. Non-matching records are passed on “as is”.

• monitor (optional): Specifies if changes to the policy file(s) should be monitored and updated in the policy
engine.

– none (default): no monitor is used.

– local: the processor will monitor for changes in the policies path and update its rule set if changes are
detected.

• monitor.interval (optional): The interval in seconds for updating policies, if a monitor is used. (default: 30
seconds).

• concurrency (optional); The number of concurrent threads for record processing. (default: 5).

• actiondir (optional): The path of the directory containing the shared object files for user-defined action plugins.
See the section on User-defined Actions for more information.

NOTE: Prior to release 0.4.0, the mode attribute accepted different values with different semantics. To
preserve the behavior of older releases:

• For old alert behavior, use enrich mode.

• For old filter behavior, use enrich mode and a policy file with filter rules only.

• For old bypass behavior, use enrich and drop the policies key from the configuration.

3.5. SysFlow Processor (sf-processor repo) 33

https://falco.org/docs/rules
POLICIES.md
POLICIES.md#user-defined-actions

SysFlow Telemetry Pipeline, Release 0.4

Exporter configuration

An exporter ("processor": "exporter") plugin consists of two modules, an encoder for converting the data to a
suitable format, and a transport module for sending the data to the target. Encoders target specific, i.e. for a particular
export target a particular set of encoders may be used. In the exporter configuration the transport module is specified
via the export parameter (required). The encoder is selected via the format parameter (optional). The default format is
json.

The following table lists the currently supported exporter modules and the corresponding encoders. Additional encoders
and transport modules can be implemented if need arises. If you plan to contribute or want to get involved in the
discussion please join the SysFlow community.

Some of these combinations require additional configuration as described in the following sections. null is used for
debugging the processor and doesn’t export any data.

File

If export is set to file, an additional parameter file.path allows the specification of the target file.

Syslog

If the export parameter is set to syslog, output to syslog is enabled and the following addtional parameters are used:

• syslog.proto (optional): The protocol used for communicating with the syslog server. Allows values are tcp,
tls and udp. Default is tcp.

• syslog.tag (optional): The tag used for each Sysflow record in syslog. Default is SysFlow.

• syslog.source (optional): If set adds a hostname to the syslog header.

• syslog.host (optional): The hostname of the sysflow server. Default is localhost.

• syslog.port (optional): The port of the syslow server. Default is 514.

ElasticSearch

Export to ElasticSearch is enabled by setting the config parameter export to es. The only supported format for export
to ElasticSearch is ecs.

Data export is done via bulk ingestion. The ingestion can be controlled by some additional parameters which are read
when the es export target is selected. Required parameters specify the ES target, index and credentials. Optional
parameters control some aspects of the behavior of the bulk ingestion and may have an effect on performance. You
may need to adapt their valuesfor optimal performance in your environment.

• es.addresses (required): A comma-separated list of ES endpoints.

• es.index (required): The name of the ES index to ingest into.

• es.username (required): The ES username.

• es.password (required): The password for the specified ES user.

• buffer (optional) The bulk size as the number of records to be ingested at once. Default is 0 but value of 0
indicates record-by-record ingestion which may be highly inefficient.

• es.bulk.numWorkers (optional): The number of ingestion workers used in parallel. Default is 0 which means that
the exporter uses as many workers as there are cores in the machine.

34 Chapter 3. License

../CONTIRBUTING.md

SysFlow Telemetry Pipeline, Release 0.4

• es.bulk.flashBuffer (optional): The size in bytes of the flush buffer for ingestion. It should be large enough to hold
one bulk (the number of records specified in buffer), otherwise the bulk is broken into smaller chunks. Default
is 5e+6.

• es.bulk.flushTimeout (optional): The flush buffer time threshold. Valid values are golang duration strings. De-
fault is 30s.

The Elastic exporter does not make any assumption on the existence or configuration of the index specified in es.index.
If the index does not exist, Elastic will automatically create it and apply a default dynamic mapping. It may be beneficial
to use an explicit mapping for the ECS data generated by the Elastic exporter. For convinience we provide an explicit
mapping for creating a new tailored index in Elastic. For more information refer to the Elastic Mapping reference.

Environment variables

It is possible to override any of the custom attributes of a plugin using an environment variable. This is especially
useful when operating the processor as a container, where you may have to deploy the processor to multiple nodes, and
have attributes that change per node. If an environment variable is set, it overrides the setting inside the config file.
The environment variables must follow the following structure:

• Environment variables must follow the naming schema <PLUGIN NAME>_<CONFIG ATTRIBUTE NAME>

• The plugin name inside the pipeline configuration file must be all lower case.

For example, to set the alert mode inside the policy engine, the following environment variable is set:

export POLICYENGINE_MODE=alert

To set the syslog values for the exporter:

export EXPORTER_TYPE=telemetry
export EXPORTER_SOURCE=${HOSTNAME}
export EXPORTER_EXPORT=syslog
export EXPORTER_HOST=192.168.2.10
export EXPORTER_PORT=514

If running as a docker container, environment variables can be passed with the docker run command:

docker run
-e EXPORTER_TYPE=telemetry \
-e EXPORTER_SOURCE=${HOSTNAME} \
-e EXPORTER_EXPORT=syslog \
-e EXPORTER_HOST=192.168.2.10 \
-e EXPORTER_PORT=514
...

Rate limiter configuration (experimental)

The flattener handler has a built-in time decay filter that can be enabled to reduce even rates in the processor.
The filter uses a time-decay bloom filter based on a semantic hashing of records. This means that the filter should
only forward one record matching a semantic hash per time decay period. The semantic hash takes into consideration
process, flow and event attributes. To enable rate limiting, modify the sysflowreader processor as follows:

{
"processor": "sysflowreader",
"handler": "flattener",

(continues on next page)

3.5. SysFlow Processor (sf-processor repo) 35

https://github.com/sysflow-telemetry/sf-processor/blob/master/resources/mappings/ecs_mapping.json
https://github.com/sysflow-telemetry/sf-processor/blob/master/resources/mappings/ecs_mapping.json
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html

SysFlow Telemetry Pipeline, Release 0.4

(continued from previous page)

"in": "sysflow sysflowchan",
"out": "flat flattenerchan",
"filter.enabled": "on|off (default: off)",
"filter.maxage": "time decay in minutes (default: 24H)"

}

3.5.5 Policy Language

The policy engine adopts and extends the Falco rules definition syntax. Before reading the rest of this section, please
go through the Falco Rules documentation to get familiar with rule, macro, and list syntax, all of which are supported
in our policy engine. Policies are written in one or more yaml files, and stored in a directory specified in the pipeline
configuration file under the policies attribute of the policy engine plugin.

Rules contain the following fields:

• rule: the name of the rule

• description: a textual description of the rule

• condition: a set of logical operations that can reference lists and macros, which when evaluating to true, can
trigger record enrichment or alert creation (depending on the policy engine mode)

• action: a comma-separated list of actions to take place when the rule evaluates to true. For a particular rule,
actions are evaluated in the order they are specified, i.e., an action can make use of the results provided by earlier
actions. An action is just the name of an action function without any parameters. The current version only
supports plugable user-defined actions. See here for a detailed description of the plugin interface and a sample
action plugin.

• priority: label representing the severity of the alert can be: (1) low, medium, or high, or (2) emergency, alert,
critical, error, warning, notice, informational, debug.

• tags (optional): set of labels appended to alert (default: empty).

• prefilter (optional): list of record types (sf.type) to whitelist before applying rule condition (default: empty).

• enabled (optional): indicates whether the rule is enabled (default: true).

NOTE: The syntax of the policy language changed slighly with the switch to release 0.4.0. For migrating
policy files used with prior releases to release 0.4.0 or higher, simply remove all action: [tag] lines.
As of release 0.4.0, tagging is done automatically. If a rule triggers all tags specified via the tags key will
be appended to the record. The action key is reserved for specifying user-defined action plugins.</p>

Macros are named conditions and contain the following fields:

• macro: the name of the macro

• condition: a set of logical operations that can reference lists and macros, which evaluate to true or false

Lists are named collections and contain the following fields:

• list: the name of the list

• items: a collection of values or lists

Drop rules block records matching a condition and can be used for reducing the amount of records processed by the
policy engine:

• drop: the name of the filter

• condition: a set of logical operations that can reference lists and macros, which evaluate to true or false

36 Chapter 3. License

https://falco.org/docs/rules/

SysFlow Telemetry Pipeline, Release 0.4

For example, the rule below specifies that matching records are process events (sf.type = PE), denoting EXEC oper-
ations (sf.opflags = EXEC) for which the process matches macro package_installers. Additionally, the global
filter containers preemptively removes from the processing stream any records for processes not running in a con-
tainer environment.

lists
- list: rpm_binaries
items: [dnf, rpm, rpmkey, yum, '"75-system-updat"', rhsmcertd-worke, subscription-ma,

repoquery, rpmkeys, rpmq, yum-cron, yum-config-mana, yum-debug-dump,
abrt-action-sav, rpmdb_stat, microdnf, rhn_check, yumdb]

- list: deb_binaries
items: [dpkg, dpkg-preconfigu, dpkg-reconfigur, dpkg-divert, apt, apt-get, aptitude,
frontend, preinst, add-apt-reposit, apt-auto-remova, apt-key,
apt-listchanges, unattended-upgr, apt-add-reposit]

- list: package_mgmt_binaries
items: [rpm_binaries, deb_binaries, update-alternat, gem, pip, pip3, sane-utils.post,␣

→˓alternatives, chef-client]

macros
- macro: package_installers
condition: sf.proc.name pmatch (package_mgmt_binaries)

global filters (blacklisting)
- filter: containers
condition: sf.container.type = host

rule definitions
- rule: Package installer detected
desc: Use of package installer detected
condition: sf.opflags = EXEC and package_installers
priority: medium
tags: [actionable-offense, suspicious-process]
prefilter: [PE] # record types for which this rule should be applied (whitelisting)
enabled: true

Attribute names

The following table shows a detailed list of attribute names supported by the policy engine, as well as their type, and
comparative Falco attribute name. Our policy engine supports both SysFlow and Falco attribute naming convention to
enable reuse of policies across the two frameworks.

Attributes Description Values Falco Attribute
sf.type Record type PE,PF,NF,FF,FE,KE N/A
sf.opflags Operation flags Operation Flags List: remove OP_ prefix evt.type (remapped as falco event types)
sf.ret Return code int evt.res
sf.ts start timestamp(ns) int64 evt.time
sf.endts end timestamp(ns) int64 N/A
sf.proc.pid Process PID int64 proc.pid
sf.proc.tid Thread PID int64 thread.tid

continues on next page

3.5. SysFlow Processor (sf-processor repo) 37

https://sysflow.readthedocs.io/en/latest/spec.html#operation-flags

SysFlow Telemetry Pipeline, Release 0.4

Table 1 – continued from previous page
Attributes Description Values Falco Attribute
sf.proc.uid Process user ID int user.uid
sf.proc.user Process user name string user.name
sf.proc.gid Process group ID int group.gid
sf.proc.group Process group name string group.name
sf.proc.apid Proc ancestors PIDs (qo) int64 proc.apid
sf.proc.aname Proc anctrs names (qo) (exclude path) string proc.aname
sf.proc.exe Process command/filename (with path) string proc.exe
sf.proc.args Process command arguments string proc.args
sf.proc.name Process name (qo) (exclude path) string proc.name
sf.proc.cmdline Process command line (qo) string proc.cmdline
sf.proc.tty Process TTY status boolean proc.tty
sf.proc.entry Process container entrypoint bool proc.vpid == 1
sf.proc.createts Process creation timestamp (ns) int64 N/A
sf.pproc.pid Parent process ID int64 proc.ppid
sf.pproc.gid Parent process group ID int64 N/A
sf.pproc.uid Parent process user ID int64 N/A
sf.pproc.group Parent process group name string N/A
sf.pproc.tty Parent process TTY status bool N/A
sf.pproc.entry Parent process container entry bool N/A
sf.pproc.user Parent process user name string N/A
sf.pproc.exe Parent process command/filename string N/A
sf.pproc.args Parent process command arguments string N/A
sf.pproc.name Parent process name (qo) (no path) string proc.pname
sf.pproc.cmdline Parent process command line (qo) string proc.pcmdline
sf.pproc.createts Parent process creation timestamp int64 N/A
sf.file.fd File descriptor number int fd.num
sf.file.path File path string fd.name
sf.file.newpath New file path (used in some FileEvents) string N/A
sf.file.name File name (qo) string fd.filename
sf.file.directory File directory (qo) string fd.directory
sf.file.type File type char ‘f’: file, 4: IPv4, 6: IPv6, ‘u’: unix socket, ‘p’: pipe, ‘e’: eventfd, ‘s’: signalfd, ‘l’: eventpoll, ‘i’: inotify, ‘o’: unknown. fd.typechar
sf.file.is_open_write File open with write flag (qo) bool evt.is_open_write
sf.file.is_open_read File open with read flag (qo) bool evt.is_open_read
sf.file.openflags File open flags int evt.args
sf.net.proto Network protocol int fd.l4proto
sf.net.sport Source port int fd.sport
sf.net.dport Destination port int fd.dport
sf.net.port Src or Dst port (qo) int fd.port
sf.net.sip Source IP int fd.sip
sf.net.dip Destination IP int fd.dip
sf.net.ip Src or dst IP (qo) int fd.ip
sf.res File or network resource string fd.name
sf.flow.rbytes Flow bytes read/received int64 evt.res
sf.flow.rops Flow operations read/received int64 N/A
sf.flow.wbytes Flow bytes written/sent int64 evt.res
sf.flow.wops Flow bytes written/sent int64 N/A
sf.container.id Container ID string container.id
sf.container.name Container name string container.name
sf.container.image.id Container image ID string container.image.id
sf.container.image Container image name string container.image

continues on next page

38 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

Table 1 – continued from previous page
Attributes Description Values Falco Attribute
sf.container.type Container type CT_DOCKER, CT_LXC, CT_LIBVIRT_LXC, CT_MESOS, CT_RKT, CT_CUSTOM, CT_CRI, CT_CONTAINERD, CT_CRIO, CT_BPM container.type
sf.container.privileged Container privilege status bool container.privileged
sf.pod.ts Pod creation timestamp int N/A
sf.pod.id Pod id string N/A
sf.pod.name Pod name string N/A
sf.pod.nodename Pod node name string N/A
sf.pod.namespace Pod namespace string N/A
sf.pod.restartcnt Pod restart count int N/A
sf.pod.hostip Pod host IP addresses json N/A
sf.pod.internalip Pod internal IP addresses json N/A
sf.pod.services Pod services json N/A
sf.ke.action Kubernetes event action K8S_COMPONENT_ADDED, K8S_COMPONENT_MODIFIED, K8S_COMPONENT_DELETED, K8S_COMPONENT_ERROR, K8S_COMPONENTNONEXISTENT, K8S_COMPONENT_UNKNOWN N/A
sf.ke.kind Kubernetes event resource type K8S_NODES, K8S_NAMESPACES, K8S_PODS, K8S_REPLICATIONCONTROLLERS, K8S_SERVICES, K8S_EVENTS, K8S_REPLICASETS, K8S_DAEMONSETS, K8S_DEPLOYMENT, K8S_UNKNOWN N/A
sf.ke.message Kubernetes event json message json N/A
sf.node.id Node identifier string N/A
sf.node.ip Node IP address string N/A
sf.schema.version SysFlow schema version string N/A
sf.version SysFlow JSON schema version int N/A

$ Jsonpath Expressions

Unlike attributes of the scalar types bool, int(64), and string, attributes of type json contain structured information in
form of stringified json records. The policy language allows access to subfields inside such json records via GJSON
jsonpath expressions. The jsonpath expression must be specified as a suffix to the attribute enclosed in square brackets.
Examples of such terms are:

sf.pod.services[0.clusterip.0] - the first cluster IP address of the first service␣
→˓associated with a pod
sf.ke.message[items.0.namespace] - the namespace of the first item in a KE message␣
→˓attribute

See the GJSON path synax for more details. The result of applying a jsonpath expression to a json attribute is always
of type string.

3.5. SysFlow Processor (sf-processor repo) 39

https://github.com/tidwall/gjson#path-syntax

SysFlow Telemetry Pipeline, Release 0.4

Operations

The policy language supports the following operations:

40 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

Op-
era-
tion

Description Example

A
and
B

Returns true if both statements are true sf.pproc.name=bash and
sf.pproc.cmdline contains
echo

A or
B

Returns true if one of the statements are true sf.file.path = “/etc/passwd” or
sf.file.path = “/etc/shadow”

not
A

Returns true if the statement isn’t true not sf.pproc.exe =
/usr/local/sbin/runc

A =
B

Returns true if A exactly matches B. Note, if B is a list, A only has to
exact match one element of the list. If B is a list, it must be explicit. It
cannot be a variable. If B is a variable use in instead.

sf.file.path = [“/etc/passwd”,
“/etc/shadow”]

A !=
B

Returns true if A is not equal to B. Note, if B is a list, A only has to be
not equal to one element of the list. If B is a list, it must be explicit. It
cannot be a variable.

sf.file.path != “/etc/passwd”

A <
B

Returns true if A is less than B. Note, if B is a list, A only has to be less
than one element in the list. If B is a list, it must be explicit. It cannot
be a variable.

sf.flow.wops < 1000

A <=
B

Returns true if A is less than or equal to B. Note, if B is a list, A only
has to be less than or equal to one element in the list. If B is a list, it
must be explicit. It cannot be a variable.

sf.flow.wops <= 1000

A >
B

Returns true if A is greater than B. Note, if B is a list, A only has to be
greater than one element in the list. If B is a list, it must be explicit. It
cannot be a variable.

sf.flow.wops > 1000

A >=
B

Returns true if A is greater than or equal to B. Note, if B is a list, A
only has to be greater than or equal to one element in the list. If B is a
list, it must be explicit. It cannot be a variable.

sf.flow.wops >= 1000

A in
B

Returns true if value A is an exact match to one of the elements in list
B. Note: B must be a list. Note: () can be used on B to merge multiple
list objects into one list.

sf.proc.exe in (bin_binaries,
usr_bin_binaries)

A
startswith
B

Returns true if string A starts with string B sf.file.path startswith ‘/home’

A
endswith
B

Returns true if string A ends with string B sf.file.path endswith ‘.json’

A
con-
tains
B

Returns true if string A contains string B sf.pproc.name=java and
sf.pproc.cmdline contains
org.apache.hadoop

A
icon-
tains
B

Returns true if string A contains string B ignoring capitalization sf.pproc.name=java and
sf.pproc.cmdline icontains
org.apache.hadooP

A
pmatch
B

Returns true if string A partial matches one of the elements in B. Note:
B must be a list. Note: () can be used on B to merge multiple list objects
into one list.

sf.proc.name pmatch (mod-
ify_passwd_binaries, ver-
ify_passwd_binaries,
user_util_binaries)

ex-
ists
A

Checks if A is not a zero value (i.e. 0 for int, “” for string) exists sf.file.path

3.5. SysFlow Processor (sf-processor repo) 41

SysFlow Telemetry Pipeline, Release 0.4

See the resources policies directory in github for examples. Feel free to contribute new and interesting rules through a
github pull request.

User-defined Actions

User-defined actions are implemented via the golang plugin mechanism. Check the documentation on Action Plugins
for a custom action plugin example.

3.5.6 Plugins

In addition to its core plugins, the processor also supports custom plugins that can be dynamically loaded into the
processor via a compiled golang shared library using the golang plugin package. Custom plugins enable easy extension
of the processor and the creation of custom pipelines tailored to specific use cases.

The processor supports four types of plugins:

• drivers: enable the ingestion of different telemetry sources into the processor pipeline.

• processors: enable the creation of custom data processing and analytic plugins to extend sf-processor pipelines.

• handlers: enable the creation of custom SysFlow record handling plugins.

• actions: enable the creation of custom action plugins to extend sf-processor’s policy engine.

Pre-requisites

• Go 1.17 (if building locally, without the plugin builder)

Processor Plugins

User-defined plugins can be plugged and extend the sf-processor pipeline. These are the most generic type of plugins,
from which all built-in processor plugins are build. Check the core package for examples. We have built-in processor
plugins for flattening the telemetry stream, implementing a policy engine, and creating event exporters.

Interface

Processor plugins (or just plugins) are implemented via the golang plugin mechanism. A plugin must implement the
following interface, defined in the github.com/sysflow-telemetry/sf-apis/go/plugins package.

// SFProcessor defines the SysFlow processor interface.
type SFProcessor interface {
Register(pc SFPluginCache)
Init(conf map[string]interface{}) error
Process(ch interface{}, wg *sync.WaitGroup)
GetName() string
SetOutChan(ch []interface{})
Cleanup()

}

The Process function is the main function of the plugin.It’s where the “main loop” of the plugin should be imple-
mented. It receives the input channel configured in the custom plugin’s block in the pipeline configuration. It also
received the pepeline thread WaitGroup. Custom processing code should be implemented using this function. Init is

42 Chapter 3. License

https://github.com/sysflow-telemetry/sf-processor/tree/master/resources/policies
https://sysflow.readthedocs.io/en/latest/processor.html#action-plugins
https://golang.org/pkg/plugin/

SysFlow Telemetry Pipeline, Release 0.4

called once, when the pipeline is loaded. Cleanup is called when the pipeline is terminated. SetOutChannel receives
a slice with the output channels configured in the plugin’s block in the pipeline configuration.

When loading a pipeline, sf-processor performs a series of health checks before the pipeline is enabled. If these health
checks fail, the processor terminates. To enable health checks on custom plugins, implement the Test function defined
in the interface below. For an example, check core/exporter/exporter.go.

// SFTestableProcessor defines a testable SysFlow processor interface.
type SFTestableProcessor interface {
SFProcessor
Test() (bool, error)

}

Example

A dynamic plugin example is provided in github. The core of the plugin is building an object that implements an
SFProcessor interface. Such an implementation looks as follows:

package main

import (
"sync"

"github.com/sysflow-telemetry/sf-apis/go/logger"
"github.com/sysflow-telemetry/sf-apis/go/plugins"
"github.com/sysflow-telemetry/sf-apis/go/sfgo"
"github.com/sysflow-telemetry/sf-processor/core/flattener"

)

const (
pluginName string = "example"

)

// Plugin exports a symbol for this plugin.
var Plugin Example

// Example defines an example plugin.
type Example struct{}

// NewExample creates a new plugin instance.
func NewExample() plugins.SFProcessor {

return new(Example)
}

// GetName returns the plugin name.
func (s *Example) GetName() string {

return pluginName
}

// Init initializes the plugin with a configuration map.
func (s *Example) Init(conf map[string]interface{}) error {

return nil
}

(continues on next page)

3.5. SysFlow Processor (sf-processor repo) 43

https://github.com/sysflow-telemetry/sf-processor/tree/master/plugins/processors/example
https://github.com/sysflow-telemetry/sf-apis/blob/master/go/plugins/processor.go

SysFlow Telemetry Pipeline, Release 0.4

(continued from previous page)

// Register registers plugin to plugin cache.
func (s *Example) Register(pc plugins.SFPluginCache) {

pc.AddProcessor(pluginName, NewExample)
}

// Process implements the main interface of the plugin.
func (s *Example) Process(ch interface{}, wg *sync.WaitGroup) {

cha := ch.(*flattener.FlatChannel)
record := cha.In
logger.Trace.Println("Example channel capacity:", cap(record))
defer wg.Done()
logger.Trace.Println("Starting Example")
for {

fc, ok := <-record
if !ok {

logger.Trace.Println("Channel closed. Shutting down.")
break

}
if fc.Ints[sfgo.SYSFLOW_IDX][sfgo.SF_REC_TYPE] == sfgo.PROC_EVT {

logger.Info.Printf("Process Event: %s, %d", fc.Strs[sfgo.SYSFLOW_IDX][sfgo.
→˓PROC_EXE_STR], fc.Ints[sfgo.SYSFLOW_IDX][sfgo.EV_PROC_TID_INT])

}
}
logger.Trace.Println("Exiting Example")

}

// SetOutChan sets the output channel of the plugin.
func (s *Example) SetOutChan(ch []interface{}) {}

// Cleanup tears down plugin resources.
func (s *Example) Cleanup() {}

// This function is not run when module is used as a plugin.
func main() {}

The custom plugin must implement the following interface:

• GetName() - returns a lowercase string representing the plugin’s label. This label is important, because it iden-
tifies the plugin in the pipeline.json file, enabling the processor to load the plugin. In the object above, this
plugin is called example. Note that the label must be unique.

• Init(conf map[string]interface{}) error - used to initialize the plugin. The configuration map that is
passed to the function stores all the configuration information defined in the plugin’s definition inside pipeline.
json (more on this later).

• Register(pc plugins.SFPluginCache) - this registers the plugin with the plugin cache of the processor.

– pc.AddProcessor(pluginName, <plugin constructor function>) (required) - registers the plu-
gin named example with the processor. You must define a constructor function using the convention
New<PluginName> which is used to instantiate the plugin, and returns it as an SFProcessor interface -
see NewExample for an example.

– pc.AddChannel(channelName, <output channel constructor function>) (optional) - if your
plugin is using a custom output channel of objects (i.e., the channel used to pass output objects from this

44 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

plugin to the next in the pipeline), it should be included in this plugin.

∗ The channelName should be a lowercase unique label defining the channel type.

∗ The constructor function should return a golang interface{} representing an object that as an In
attribute of type chan <ObjectToBePassed>. We will call this object, a wrapped channel object
going forward. For example, the channel object that passes sysflow objects is called SFChannel, and
is defined here

∗ For a complete example of defining an output channel, see NewFlattenerChan in the flattener as well
as the Register function. The FlatChannel is defined here

• Process(ch interface{}, wg *sync.WaitGroup) - this function is launched by the processor as a go
thread and is where the main plugin processing occurs. It takes a wrapped channel object, which acts as the
input data source to the plugin (i.e., this is the channel that is configured as the input channel to the plugin in the
pipeline.json). It also takes a sync.WaitGroup object, which is used to signal to the processor when the plugin
has completed running (see defer wg.Done() in code). The processor must loop on the input channel, and do
its analysis on each input record. In this case, the example plugin is reading flat records and printing them to the
screen.

• SetOutChan(ch []interface{}) - sets the wrapped channels that will serve as the output channels for the
plugin. The output channels are instantiated by the processor, which is also in charge of stitching the plugins
together. If the plugin is the last one in the chain, then this function can be left empty. See the SetOutputChan
function in the flattener to see how an output channel is implemented.

• Cleanup() - Used to cleanup any resources. This function is called by the processor after the plugin Process
function exits. One of the key items to close in the Cleanup function is the output channel using the golang
close() function. Closing the output channel enables the pipeline to be torn down gracefully and in sequence.

• main(){} - this main method is not used by the plugin or processor. It’s required by golang in order to be able
to compile as a shared object.

To compile the example plugin, use the provided Makefile:

make -C plugins/processors/example

This will build the plugin and copy it into resources/plugins/.

To use the new plugin, use the configuration provided in github, which defines the following pipeline:

{
"pipeline":[
{
"processor": "sysflowreader",
"handler": "flattener",
"in": "sysflow sysflowchan",
"out": "flat flattenerchan"
},
{
"processor": "example",
"in": "flat flattenerchan"
}

]
}

This pipeline contains two plugins:

• The builtin sysflowReader plugin with flattener handler, which takes raw sysflow objects, and flattens
them

into arrays of integers and strings for easier processing in certain plugins like the policy engine.

3.5. SysFlow Processor (sf-processor repo) 45

https://github.com/sysflow-telemetry/sf-apis/blob/master/go/plugins/processor.go
https://github.com/sysflow-telemetry/sf-processor/blob/master/core/flattener/flattener.go
https://github.com/sysflow-telemetry/sf-apis/blob/master/go/plugins/handler.go
https://github.com/sysflow-telemetry/sf-processor/blob/master/core/flattener/flattener.go
https://gobyexample.com/closing-channels
https://github.com/sysflow-telemetry/sf-processor/tree/master/plugins/processors/example

SysFlow Telemetry Pipeline, Release 0.4

• The example plugin, which takes the flattened output from the sysflowreader plugin, and prints it the screen.

The key item to note is that the output channel (i.e., out) of sysflowreader matches the input channel (i.e., in) of
the example plugin. This ensures that the plugins will be properly stitched together.

Build

The example plugin is a custom plugin that illustrates how to implement a minimal plugin that reads the records from
the input channel and logs them to the standard output.

To run this example, in the root of sf-processor, build the processor and the example plugin. Note, this plugin’s shared
object is generated in resources/plugins/example.so.

make build && make -C plugins/processors/example

Then, run:

cd driver && ./sfprocessor -log=info -config=../plugins/processors/example/pipeline.
→˓example.json ../resources/traces/tcp.sf

Plugin builder

To build the plugin for release, Go requires the code to be compiled with the exact package versions that the SysFlow
processor was compiled with. The easiest way to achieve this is to use the pre-built plugin-builder Docker image
in your build. This option also works for building plugins for deployment with the SysFlow binary packages.

Below is an example of how this can be achieved. Set $TAG to a SysFlow release (>=0.4.0), edge, or dev.

First, build the plugin:

docker run --rm \
-v $(pwd)/plugins:/go/src/github.com/sysflow-telemetry/sf-processor/plugins \
-v $(pwd)/resources:/go/src/github.com/sysflow-telemetry/sf-processor/resources \
sysflowtelemetry/plugin-builder:$TAG \
make -C /go/src/github.com/sysflow-telemetry/sf-processor/plugins/processors/example

To test it, run the pre-built processor with the example configuration and trace.

docker run --rm \
-v $(pwd)/plugins:/usr/local/sysflow/plugins \
-v $(pwd)/resources:/usr/local/sysflow/resources \
-w /usr/local/sysflow/bin \
--entrypoint=/usr/local/sysflow/bin/sfprocessor \
sysflowtelemetry/sf-processor:$TAG \
-log=info -config=../plugins/processors/example/pipeline.example.json ../resources/

→˓traces/tcp.sf

The output on the above pre-recorded trace should look like this:

[Health] 2022/02/21 12:55:19 pipeline.go:246: Health checks: passed
[Info] 2022/02/21 12:55:19 main.go:147: Successfully loaded pipeline configuration
[Info] 2022/02/21 12:55:19 pipeline.go:170: Starting the processing pipeline
[Info] 2022/02/21 12:55:19 example.go:75: Process Event: ./server, 13823
[Info] 2022/02/21 12:55:19 example.go:75: Process Event: ./client, 13824

(continues on next page)

46 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

(continued from previous page)

[Info] 2022/02/21 12:55:19 example.go:75: Process Event: ./client, 13824
[Info] 2022/02/21 12:55:19 example.go:75: Process Event: ./server, 13823

Handler Plugins

User-defined handler modules can be plugged to the built-in SysFlow processor plugin to implement custom data
processing and analytic pipelines.

Interface

Handlers are implemented via the golang plugin mechanism. A handler must implement the following interface, defined
in the github.com/sysflow-telemetry/sf-apis/go/plugins package.

// SFHandler defines the SysFlow handler interface.
type SFHandler interface {

RegisterChannel(pc SFPluginCache)
RegisterHandler(hc SFHandlerCache)
Init(conf map[string]interface{}) error
IsEntityEnabled() bool
HandleHeader(sf *CtxSysFlow, hdr *sfgo.SFHeader) error
HandleContainer(sf *CtxSysFlow, cont *sfgo.Container) error
HandleProcess(sf *CtxSysFlow, proc *sfgo.Process) error
HandleFile(sf *CtxSysFlow, file *sfgo.File) error
HandleNetFlow(sf *CtxSysFlow, nf *sfgo.NetworkFlow) error
HandleNetEvt(sf *CtxSysFlow, ne *sfgo.NetworkEvent) error
HandleFileFlow(sf *CtxSysFlow, ff *sfgo.FileFlow) error
HandleFileEvt(sf *CtxSysFlow, fe *sfgo.FileEvent) error
HandleProcFlow(sf *CtxSysFlow, pf *sfgo.ProcessFlow) error
HandleProcEvt(sf *CtxSysFlow, pe *sfgo.ProcessEvent) error
SetOutChan(ch []interface{})
Cleanup()

}

Each Handle* function receives the current SysFlow record being processed along with its corresponding parsed record
type. Custom processing code should be implemented using these functions.

Build

The printer handler is a pluggable handler that logs select SysFlow records to the standard output. This plugin doesn’t
define any output channels, so it acts as a plugin sink (last plugin in a pipeline).

To run this example, in the root of sf-processor, build the processor and the handler plugin. Note, this plugin’s shared
object is generated in resources/handlers/printer.so.

make build && make -C plugins/handlers/printer

Then, run:

cd driver && ./sfprocessor -log=info -config=../plugins/handlers/printer/pipeline.
→˓printer.json ../resources/traces/tcp.sf

3.5. SysFlow Processor (sf-processor repo) 47

SysFlow Telemetry Pipeline, Release 0.4

Plugin builder

To build the plugin for release, Go requires the code to be compiled with the exact package versions that the SysFlow
processor was compiled with. The easiest way to achieve this is to use the pre-built plugin-builder Docker image
in your build. This option also works for building plugins for deployment with the SysFlow binary packages.

Below is an example of how this can be achieved. Set $TAG to a SysFlow release (>=0.4.0), edge, or dev.

First, build the plugin:

docker run --rm \
-v $(pwd)/plugins:/go/src/github.com/sysflow-telemetry/sf-processor/plugins \
-v $(pwd)/resources:/go/src/github.com/sysflow-telemetry/sf-processor/resources \
sysflowtelemetry/plugin-builder:$TAG \
make -C /go/src/github.com/sysflow-telemetry/sf-processor/plugins/handlers/printer

To test it, run the pre-built processor with the example configuration and trace.

docker run --rm \
-v $(pwd)/plugins:/usr/local/sysflow/plugins \
-v $(pwd)/resources:/usr/local/sysflow/resources \
-w /usr/local/sysflow/bin \
--entrypoint=/usr/local/sysflow/bin/sfprocessor \
sysflowtelemetry/sf-processor:$TAG \
-log=info -config=../plugins/handlers/printer/pipeline.printer.json ../resources/

→˓traces/tcp.sf

The output on the above pre-recorded trace should look like this:

[Info] 2022/02/21 15:39:58 printer.go:118: ProcEvt ./server, 13823
[Info] 2022/02/21 15:39:58 printer.go:100: FileFlow ./server, 3
[Info] 2022/02/21 15:39:58 printer.go:100: FileFlow ./server, 3
[Info] 2022/02/21 15:39:58 printer.go:118: ProcEvt ./client, 13824
[Info] 2022/02/21 15:39:58 printer.go:100: FileFlow ./client, 3
[Info] 2022/02/21 15:39:58 printer.go:100: FileFlow ./client, 3
[Info] 2022/02/21 15:39:58 printer.go:94: NetworkFlow ./client, 8080
[Info] 2022/02/21 15:39:58 printer.go:118: ProcEvt ./client, 13824
[Info] 2022/02/21 15:39:58 printer.go:94: NetworkFlow ./server, 8080
[Info] 2022/02/21 15:39:58 printer.go:118: ProcEvt ./server, 13823

48 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

Action Plugins

User-defined actions can be plugged to SysFlow’s Policy Engine rule declarations to perform additional processing on
matched records.

Interface

Actions are implemented via the golang plugin mechanism. An action must implement the following interface, defined
in the github.com/sysflow-telemetry/sf-processor/core/policyengine/engine package.

// Prototype of an action function
type ActionFunc func(r *Record) error

// Action interface for user-defined actions
type Action interface {

GetName() string
GetFunc() ActionFunc

}

Actions have a name and an action function. Within a single policy engine instance, action names must be unique.
User-defined actions cannot re-declare built-in actions. Reusing names of user-defined actions overwrites previously
registered actions.

The action function receives the current record as an argument and thus has access to all record attributes. The action
result can be stored in the record context via the context modifier methods.

Build

The now action is a pluggable action that creates a tag containing the current time in nanosecond precision.

First, in the root of sf-processor, build the processor and the action plugin. Note, this plugin’s shared object is generated
in resources/actions/now.so.

make build && make -C plugins/actions/example

Then, run:

cd driver && ./sfprocessor -log=quiet -config=../plugins/actions/example/pipeline.
→˓actions.json ../resources/traces/tcp.sf

Plugin builder

To build the plugin for release, Go requires the code to be compiled with the exact package versions that the SysFlow
processor was compiled with. The easiest way to achieve this is to use the pre-built plugin-builder Docker image
in your build. This option also works for building plugins for deployment with the SysFlow binary packages.

Below is an example of how this can be achieved. Set $TAG to a SysFlow release (>=0.4.0), edge, or dev.

First, build the plugin:

docker run --rm \
-v $(pwd)/plugins:/go/src/github.com/sysflow-telemetry/sf-processor/plugins \

(continues on next page)

3.5. SysFlow Processor (sf-processor repo) 49

SysFlow Telemetry Pipeline, Release 0.4

(continued from previous page)

-v $(pwd)/resources:/go/src/github.com/sysflow-telemetry/sf-processor/resources \
sysflowtelemetry/plugin-builder:$TAG \
make -C /go/src/github.com/sysflow-telemetry/sf-processor/plugins/actions/example

To test it, run the pre-built processor with the example configuration and trace.

docker run --rm \
-v $(pwd)/plugins:/usr/local/sysflow/plugins \
-v $(pwd)/resources:/usr/local/sysflow/resources \
-w /usr/local/sysflow/bin \
--entrypoint=/usr/local/sysflow/bin/sfprocessor \
sysflowtelemetry/sf-processor:$TAG \
-log=quiet -config=../plugins/actions/example/pipeline.actions.json ../resources/

→˓traces/tcp.sf

In the output, observe that all records matching the policy speficied in pipeline.actions.json are tagged by action
now with the tag now_in_nanos. For example:

{
"version": 4,
"endts": 0,
"opflags": [
"EXEC"

],
...
"policies": [
{
"id": "Action example",
"desc": "user-defined action example",
"priority": 0

}
],
"tags": [
"now_in_nanos:1645409122055957900"

]
}

3.5.7 Docker usage

Documentation and scripts for how to deploy the SysFlow Processor with docker compose can be found in here.

Processor environment

As mentioned in a previous section, all custom plugin attributes can be set using the following: <PLUGIN
NAME>_<CONFIG ATTRIBUTE NAME> format. Note that the docker compose file sets several attributes including
EXPORTER_TYPE, EXPORTER_HOST and EXPORTER_PORT.

The following are the default locations of the pipeline configuration and plugins directory:

• pipeline.json: /usr/local/sysflow/conf/pipeline.json

• drivers dir: /usr/local/sysflow/resources/drivers

50 Chapter 3. License

https://sysflow.readthedocs.io/en/latest/docker.html

SysFlow Telemetry Pipeline, Release 0.4

• plugins dir: /usr/local/sysflow/resources/plugins

• handler dir: /usr/local/sysflow/resources/handlers

• actions dir: /usr/local/sysflow/resources/actions

The default configuration can be changed by setting up a virtual mounts mapping the host directories/files into the
container using the volumes section of the sf-processor in the docker-compose.yaml.

sf-processor:
container_name: sf-processor
image: sysflowtelemetry/sf-processor:latest
privileged: true
volumes:
...
- ./path/to/my.pipeline.json:/usr/local/sysflow/conf/pipeline.json

The policy location can be overwritten by setting the POLICYENGINE_POLICIES environment variable, which can
point to a policy file or a directory containing policy files (must have yaml extension).

The docker container uses a default filter.yaml policy that outputs SysFlow records in json. You can use your own
policy files from the host by mounting your policy directory into the container as follows, in which the custom pipeline
points to the mounted policies.

sf-processor:
container_name: sf-processor
image: sysflowtelemetry/sf-processor:latest
privileged: true
volumes:
...
- ./path/to/my.pipeline.json:/usr/local/sysflow/conf/pipeline.json
- ./path/to/policies/:/usr/local/sysflow/resources/policies/

3.6 SysFlow Exporter (sf-exporter repo)

SysFlow exporter to export SysFlow traces to S3-compliant object stores.

Note: For remote syslogging and other export formats and connectors, check the SysFlow processor
project.

3.6.1 Build

This document describes how to build and run the application both inside a docker container and on a Linux host.
Building and running the application inside a docker container is the easiest way to start. For convenience, skip the
build step and pull pre-built images directly from Docker Hub.

To build the project, first clone the source code, with submodules:

git clone --recursive git@github.com:sysflow-telemetry/sf-exporter.git

To checkout submodules on an already cloned repo:

git submodule update --init --recursive

To build the docker image for the exporter locally, run:

3.6. SysFlow Exporter (sf-exporter repo) 51

https://github.com/sysflow-telemetry/sf-processor

SysFlow Telemetry Pipeline, Release 0.4

docker build -t sf-exporter .

3.6.2 Docker usage

The easiest way to run the SysFlow exporter is from a Docker container, with host mount for the trace files to export.
The following command shows how to run sf-exporter with trace files located in /mnt/data on the host.

docker run -d --rm --name sf-exporter \
-e S3_ENDPOINT=<ip_address> \
-e S3_BUCKET=<bucket_name> \
-e S3_ACCESS_KEY=<access_key> \
-e S3_SECRET_KEY=<secret_key> \
-e NODE_IP=$HOSTNAME \
-e INTERVAL=150 \
-v /mnt/data:/mnt/data \
sysflowtelemetry/sf-exporter

It’s also possible to read S3’s keys as docker secrets s3_access_key and s3_secret_key. Instructions for docker
compose and helm deployments are available in here.

docker service create --name sf-exporter \
-e NODE_IP=10.1.0.159 \
-e INTERVAL=15 \
--secret s3_access_key \
--secret s3_secret_key \
--mount type=bind,source=/mnt/data,destination=/mnt/data \
sf-exporter:latest

The exporter is usually executed as a pod or docker-compose service together with the SysFlow collector. The exporter
automatically removes exported files from the local filesystem it monitors. See the SysFlow deployments packages for
more information.

3.6.3 Development

To build the exporter locally, run:

cd src & pip3 install -r requirements.txt
cd modules/sysflow/py3 & sudo python3 setup.py install

To run the exporter from the command line:

./exporter.py -h
usage: exporter.py [-h] [--exporttype {s3,local}] [--s3endpoint S3ENDPOINT]

[--s3port S3PORT] [--s3accesskey S3ACCESSKEY] [--s3secretkey␣
→˓S3SECRETKEY]

[--s3bucket S3BUCKET] [--s3location S3LOCATION] [--s3prefix␣
→˓S3PREFIX]

[--secure [SECURE]] [--scaninterval SCANINTERVAL] [--timeout␣
→˓TIMEOUT]

[--agemin AGEMIN] [--log LOG] [--dir DIR] [--mode MODE] [--todir␣
→˓TODIR]

(continues on next page)

52 Chapter 3. License

https://sysflow.readthedocs.io/en/latest/deploy.html
https://github.com/sysflow-telemetry/sf-deployments

SysFlow Telemetry Pipeline, Release 0.4

(continued from previous page)

[--nodename NODENAME] [--nodeip NODEIP] [--podname PODNAME] [--
→˓podip PODIP]

[--podservice PODSERVICE] [--podns PODNS] [--poduuid PODUUID] [--
→˓clusterid CLUSTERID]

sf-exporter: watches and uploads monitoring files to object store.

optional arguments:
-h, --help show this help message and exit
--exporttype {s3,local}

export type
--s3endpoint S3ENDPOINT

s3 server address
--s3port S3PORT s3 server port
--s3accesskey S3ACCESSKEY

s3 access key
--s3secretkey S3SECRETKEY

s3 secret key
--s3bucket S3BUCKET target data bucket(s) comma delimited. number must match data␣

→˓dirs
--s3location S3LOCATION

target data bucket location
--s3prefix S3PREFIX s3 bucket prefix
--secure [SECURE] enables SSL connection
--scaninterval SCANINTERVAL

interval between scans
--timeout TIMEOUT connection timeout
--agemin AGEMIN age in minutes to keep in case of repeated timeouts
--log LOG logging level for exporter: DEBUG, INFO, WARNING, ERROR, CRITICAL
--dir DIR data directory(s) comma delimited. number must match s3buckets
--mode MODE copy modes (move-del, cont-update, cont-update-recur) comma␣

→˓delimited. number must match buckets, data dirs
--todir TODIR data directory
--nodename NODENAME exporter's node name
--nodeip NODEIP exporter's node IP
--podname PODNAME exporter's pod name
--podip PODIP exporter's pod IP
--podservice PODSERVICE

exporter's pod service
--podns PODNS exporter's pod namespace
--poduuid PODUUID exporter's: pod UUID
--clusterid CLUSTERID

exporter's: cluster ID

3.6. SysFlow Exporter (sf-exporter repo) 53

SysFlow Telemetry Pipeline, Release 0.4

3.7 SysFlow APIs and Utilities (sf-apis repo)

3.7.1 SysFlow APIs and Utilities

SysFlow uses Apache Avro serialization to create compact records that can be processed by a wide variety of program-
ming languages, and big data analytics platforms such as Apache Spark. Avro enables a user to generate programming
stubs for serializing and deserializing data, using either Apache Avro IDL or Apache schema files.

Cloning source

The sf-apis project has been tested primarily on Ubuntu 16.04 and 18.04. The project will be tested on other flavors of
UNIX in the future. This document describes how to build and run the application both on a linux host.

To build the project, first pull down the source code:

git clone git@github.com:sysflow-telemetry/sf-apis.git

Avro IDL and schema files

The Avro IDL files for SysFlow are available in the repository under sf-apis/avro/avdl, while the schema files
are available under sf-apis/avro/avsc. The avrogen tool can be used to generate classes using the schema. See
sf-apis/avro/generateCClasses.sh for an example of how to generate C++ headers from apache schema files.

SysFlow Avro C++

SysFlow C++ SysFlow objects and encoders/decoders are all available in sf-apis/c++/sysflow/sysflow.hh.
sf-collector/src/sysreader.cpp provides a good example of how to read and process different SysFlow avro
objects in C++. Note that one must install Apache Avro 1.9.1 cpp to run an application that includes sysflow.hh. The
library file -lavrocpp must also be linked during compilation.

SysFlow Avro Python 3

SysFlow Python 3 APIs are generated with the avro-gen Python package. These classes are available in sf-apis/py3.

In order to install the SysFlow Python package:

cd sf-apis/py3
sudo python3 setup.py install

Please see the SysFlow Python API reference documents for more information on the modules and objects in the library.

54 Chapter 3. License

https://avro.apache.org/
https://spark.apache.org/
https://avro.apache.org/docs/1.9.1/idl.html
https://avro.apache.org/docs/1.9.1/spec.html
https://avro.apache.org/releases.html

SysFlow Telemetry Pipeline, Release 0.4

SysFlow utilities

sysprint

sysprint is a tool written using the SysFlow Python API that will print out SysFlow traces from a file into several
different formats including JSON, CSV, and tabular pretty print form. Not only will sysprint help you interact with
SysFlow, it is also a good example for how to write new analytics tools using the SysFlow API.

usage: sysprint [-h] [-i {local,s3}] [-o {str,flatjson,json,csv}] [-w FILE]
[-c FIELDS] [-f FILTER] [-l] [-e S3ENDPOINT] [-p S3PORT]
[-a S3ACCESSKEY] [-s S3SECRETKEY] [-k] [-A]
[--secure [SECURE]]
path [path ...]

sysprint: a human-readable printer and format converter for Sysflow captures.

positional arguments:
path list of paths or bucket names from where to read trace

files

optional arguments:
-h, --help show this help message and exit
-i {local,s3}, --input {local,s3}

input type
-o {str,flatjson,json,csv}, --output {str,flatjson,json,csv}

output format
-w FILE, --file FILE output file path
-c FIELDS, --fields FIELDS

comma-separated list of sysflow fields to be printed
-f FILTER, --filter FILTER

filter expression
-l, --list list available record attributes
-e S3ENDPOINT, --s3endpoint S3ENDPOINT

s3 server address from where to read sysflows
-p S3PORT, --s3port S3PORT

s3 server port
-a S3ACCESSKEY, --s3accesskey S3ACCESSKEY

s3 access key
-s S3SECRETKEY, --s3secretkey S3SECRETKEY

s3 secret key
-k, --k8s add pod related fields to output
-A, --allfields add all available fields to output
--secure [SECURE] indicates if SSL connection

3.7. SysFlow APIs and Utilities (sf-apis repo) 55

SysFlow Telemetry Pipeline, Release 0.4

3.7.2 SysFlow Python API Reference

SysFlow Reader API

class sysflow.reader.FlattenedSFReader(filename, retEntities=False)
FlattenedSFReader

This class loads a raw sysflow file, and links all Entities (header, process, container, files) with the current flow
or event in the file. As a result, the user does not have to manage this information. This class supports the python
iterator design pattern. Example Usage:

reader = FlattenedSFReader(trace)
head = 20 # max number of records to print
for i, (objtype, header, cont, pproc, proc, files, evt, flow) in enumerate(reader):

exe = proc.exe
pid = proc.oid.hpid if proc else ''
evflow = evt or flow
tid = evflow.tid if evflow else ''
opFlags = utils.getOpFlagsStr(evflow.opFlags) if evflow else ''
sTime = utils.getTimeStr(evflow.ts) if evflow else ''
eTime = utils.getTimeStr(evflow.endTs) if flow else ''
ret = evflow.ret if evt else ''
res1 = ''
if objtype == ObjectTypes.FILE_FLOW or objtype == ObjectTypes.FILE_EVT:

res1 = files[0].path
elif objtype == ObjectTypes.NET_FLOW:

res1 = utils.getNetFlowStr(flow)
numBReads = evflow.numRRecvBytes if flow else ''
numBWrites = evflow.numWSendBytes if flow else ''
res2 = files[1].path if files and files[1] else ''
cont = cont.id if cont else ''
print("|{0:30}|{1:9}|{2:26}|{3:26}|{4:30}|{5:8}|{6:8}|".format(exe, opFlags,␣

→˓sTime, eTime, res1, numBReads, numBWrites))
if i == head:

break

Parameters

• filename (str) – the name of the sysflow file to be read.

• retEntities (bool) – If True, the reader will return entity objects by themselves as they
are seen in the sysflow file. In this case, all other objects will be set to None

Iterator
Reader returns a tuple of objects in the following order:

objtype (sysflow.objtypes.ObjectTypes) The type of entity or flow returned.

header (sysflow.entity.SFHeader) The header entity of the file.

pod (sysflow.entity.Pod) The pod associated with the flow/evt, or None if no pod.

cont (sysflow.entity.Container) The container associated with the flow/evt, or None if no container.

pproc (sysflow.entity.Process) The parent process associated with the flow/evt.

proc (sysflow.entity.Process) The process associated with the flow/evt.

56 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

files (tuple of sysflow.entity.File) Any files associated with the flow/evt.

evt (sysflow.event.{ProcessEvent,FileEvent}) If the record is an event, it will be returned here.
Otherwise this variable will be None. objtype will indicate the type of event.

flow (sysflow.flow.{NetworkFlow,FileFlow}) If the record is a flow, it will be returned here. Oth-
erwise this variable will be None. objtype will indicate the type of flow.

getProcess(oid)
Returns a Process Object given a process object id.

Parameters
oid (sysflow.type.OID) – the object id of the Process Object requested

Return type
sysflow.entity.Process

Returns
the desired process object or None if no process object is available.

class sysflow.reader.NestedNamespace(**kwargs)

class sysflow.reader.SFReader(filename)
SFReader

This class loads a raw sysflow file, and returns each entity/flow one by one. It is the user’s responsibility to link
the related objects together through the OID. This class supports the python iterator design pattern. Example
Usage:

reader = SFReader("./sysflowfile.sf")
for name, sf in reader:

if name == "sysflow.entity.SFHeader":
//do something with the header object

elif name == "sysflow.entity.Container":
//do something with the container object

elif name == "sysflow.entity.Process":
//do something with the Process object

....

Parameters
filename (str) – the name of the sysflow file to be read.

SysFlow Formatter API

class sysflow.formatter.SFFormatter(reader, defs=[])
SFFormatter

This class takes a FlattenedSFReader, and exports SysFlow as either JSON, CSV or Pretty Print . Example
Usage:

reader = FlattenedSFReader(trace, False)
formatter = SFFormatter(reader)
fields=args.fields.split(',') if args.fields else None
if args.output == 'json':

if args.file is not None:
formatter.toJsonFile(args.file, fields=fields)

(continues on next page)

3.7. SysFlow APIs and Utilities (sf-apis repo) 57

SysFlow Telemetry Pipeline, Release 0.4

(continued from previous page)

else:
formatter.toJsonStdOut(fields=fields)

elif args.output == 'csv' and args.file is not None:
formatter.toCsvFile(args.file, fields=fields)

elif args.output == 'str':
formatter.toStdOut(fields=fields)

Parameters

• reader (sysflow.reader.FlattenedSFReader) – A reader representing the sysflow file
being read.

• defs (list) – A list of paths to filter definitions.

applyFuncJson(func, fields=None, expr=None)
Enables a delegate function to be applied to each JSON record read.

Parameters

• func (function) – delegate function of the form func(str)

• fields (list) – a list of the SysFlow fields to be exported in JSON. See formatter.py for
a list of fields

• expr (str) – a sfql filter expression

enableAllFields()

Enables all available fields to be added to the output by default.

enableK8sEventFields()

Enables fields related to k8s events be added to the output by default.

enablePodFields()

Enables fields related to pods to be added to the output by default.

getFields()

Returns a list with available SysFlow fields and their descriptions.

toCsvFile(path, fields=None, header=True, expr=None)
Writes SysFlow to CSV file.

Parameters

• path (str) – the full path of the output file.

• fields (list) – a list of the SysFlow fields to be exported in the JSON. See formatter.py
for a list of fields

• expr (str) – a sfql filter expression

toDataframe(fields=None, expr=None)
Enables a delegate function to be applied to each JSON record read.

Parameters

• func (function) – delegate function of the form func(str)

• fields (list) – a list of the SysFlow fields to be exported in the JSON. See formatter.py
for a list of fields

• expr (str) – a sfql filter expression

58 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

toJson(fields=None, flat=False, expr=None)
Writes SysFlow as JSON object.

Parameters

• fields (list) – a list of the SysFlow fields to be exported in JSON. See formatter.py for
a list of fields

• expr (str) – a sfql filter expression

Flat
specifies if JSON output should be flattened

toJsonFile(path, fields=None, flat=False, expr=None)
Writes SysFlow to JSON file.

Parameters

• path (str) – the full path of the output file.

• fields (list) – a list of the SysFlow fields to be exported in JSON. See formatter.py for
a list of fields

• expr (str) – a sfql filter expression

Flat
specifies if JSON output should be flattened

toJsonStdOut(fields=None, flat=False, expr=None)
Writes SysFlow as JSON to stdout.

Parameters

• fields (list) – a list of the SysFlow fields to be exported in JSON. See formatter.py for
a list of fields

• expr (str) – a sfql filter expression

Flat
specifies if JSON output should be flattened

toStdOut(fields=['ts_uts', 'type', 'proc.exe', 'proc.args', 'pproc.pid', 'proc.pid', 'proc.tid', 'opflags', 'res',
'flow.rbytes', 'flow.wbytes', 'container.id'], pretty_headers=True, showindex=True, expr=None)

Writes SysFlow as a tabular pretty print form to stdout.

Parameters

• fields (list) – a list of the SysFlow fields to be exported in the JSON. See formatter.py
for a list of fields

• pretty_headers (bool) – print table headers in pretty format.

• showindex (bool) – show record number.

• expr (str) – a sfql filter expression

3.7. SysFlow APIs and Utilities (sf-apis repo) 59

SysFlow Telemetry Pipeline, Release 0.4

SysFlow Object Types

class sysflow.objtypes.ObjectTypes(value, names=None, *values, module=None, qualname=None,
type=None, start=1, boundary=None)

ObjectTypes

Enumeration representing each of the object types:
HEADER = 0, CONT = 1, PROC = 2, FILE = 3, PROC_EVT = 4, NET_FLOW = 5, FILE_FLOW = 6,
FILE_EVT = 7 PROC_FLOW = 8 POD = 9 K8S_EVT = 10

SysFlow Utils API

sysflow.utils.getEnvStr(env)
Converts an array of environment variables into a string representation.

Parameters
env (str[]) – An array of environment variables.

Return type
str

Returns
A concatenated string representation of the environment variables array.

sysflow.utils.getIpIntStr(ipInt)
Converts an IP address in host order integer to a string representation.

Parameters
ipInt – an IP address integer

Return type
str

Returns
A string representation of the IP address

sysflow.utils.getNetFlowStr(nf)
Converts a NetworkFlow into a string representation.

Parameters
nf (sysflow.schema_classes.SchemaClasses.sysflow.flow.NetworkFlowClass) – a
NetworkFlow object.

Return type
str

Returns
A string representation of the NetworkFlow in form (sip:sport-dip:dport).

sysflow.utils.getOpFlags(opFlags)
Converts a sysflow operations flag bitmap into a set representation.

Parameters
opflag (int) – An operations bitmap from a flow or event.

Return type
set

Returns
A set representation of the operations bitmap.

60 Chapter 3. License

sip:sport-dip:dport

SysFlow Telemetry Pipeline, Release 0.4

sysflow.utils.getOpFlagsStr(opFlags)
Converts a sysflow operations flag bitmap into a string representation.

Parameters
opflag (int) – An operations bitmap from a flow or event.

Return type
str

Returns
A string representation of the operations bitmap.

sysflow.utils.getOpStr(opFlags)
Converts a sysflow operations into a string representation.

Parameters
opflag (int) – An operations bitmap from a flow or event.

Return type
str

Returns
A string representation of the operations bitmap.

sysflow.utils.getOpenFlags(openFlags)
Converts a sysflow open modes flag bitmap into a set representation.

Parameters
opflag – An open modes bitmap from a flow or event.

Return type
set

Returns
A set representation of the open modes bitmap.

sysflow.utils.getTimeStr(ts)
Converts a nanosecond ts into a string representation.

Parameters
ts (int) – A nanosecond epoch.

Return type
str

Returns
A string representation of the timestamp in %m/%d/%YT%H:%M:%S.%f format.

sysflow.utils.getTimeStrIso8601(ts)
Converts a nanosecond ts into a string representation in UTC time zone.

Parameters
ts (int) – A nanosecond epoch.

Return type
str

Returns
A string representation of the timestamp in ISO 8601 format.

3.7. SysFlow APIs and Utilities (sf-apis repo) 61

SysFlow Telemetry Pipeline, Release 0.4

SysFlow Graphlet API

class sysflow.graphlet.Edge(n1, n2, label)
Edge

This class represents a graph edge, and acts as a super class for specific edges.

Parameters
edge (sysflow.Edge) – an abstract edge object.

class sysflow.graphlet.EvtEdge(n1, n2, label)
EvtEdge

This class represents a graph event edge. It is used for sysflow event objects and subclasses Edge.

Parameters
evtedge (sysflow.EvtEdge) – an edge object representing a sysflow evt.

class sysflow.graphlet.FileFlowNode(oid, exe, args)
FileFlowNode

This class represents a fileflow node.

Parameters
ff (sysflow.FileFlow) – a fileflow node object.

class sysflow.graphlet.FlowEdge(n1, n2, label)
FlowEdge

This class represents a graph flow edge. It is used for sysflow flow objects and subclasses Edge.

Parameters
flowedge (sysflow.FlowEdge) – an edge object representing a sysflow flow.

class sysflow.graphlet.Graphlet(path, expr=None, defs=[])
Graphlet

This class takes a path pointing to a sysflow trace or a directory containing sysflow traces.

Example Usage:

basic usage
g1 = Graphlet('data/')
g1.view()

filtering and enrichment with policies
ioc1 = 'proc.exe = /usr/bin/scp'
g1 = Graphlet('data/', ioc1, ['policies/ttps.yaml'])
g1.view()

Parameters
graphlet (sysflow.Graphlet) – A compact provenance graph representation based on sys-
flow traces.

associatedMitigations(oid=None)
Returns a dataframe containing the set of MITRE mitigations associated with TTPs annotated in the graph.

Parameters
oid (object ID string) – a node ID filter.

62 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

compare(other, withoid=False, peek=True, peeksize=3, flows=True, ttps=False)
Compares the graph to another graph (using a simple graph difference), returning a graph slice.

Parameters

• withoid (boolean) – indicates whether to show the node ID.

• peek (boolean) – indicates whether to show details about the records associated with the
nodes.

• peeksize (integer) – the number of node records to show.

• flows (boolean) – indicates whether to show flow nodes.

• ttps (boolean) – indicates whether to show tags.

countermeasures(oid=None)
Returns a dataframe containing the set of MITRE d3fend defenses associated with TTPs annotated in the
graph.

Parameters
oid (object ID string) – a node ID filter.

data(oid=None)
Returns a dataframe containing the underlying data (sysflow records) of the graph.

Parameters
oid (object ID string) – a node ID filter.

df(oid=None)
Returns a dataframe containing a summary of the graph node IDs and process metadata associated with
them.

Parameters
oid (object ID string) – a node ID filter.

mitigations(oid=None, details=False)
Returns a dataframe containing the summary set of MITRE mitigations associated with TTPs annotated in
the graph.

Parameters
oid (object ID string) – a node ID filter.

tags(oid=None)
Returns a dataframe containing the set of (enrichment) tags in the graph.

Parameters
oid (object ID string) – a node ID filter.

ttps(oid=None, details=False)
Returns a dataframe containing the set of MITRE TTP tags in the graph (e.g., as enriched by the ttps.yaml
policy provided with the SysFlow processor).

Parameters

• oid (object ID string) – a node ID filter.

• details (boolean) – indicates whether to include complete TTP metadata in the
dataframe.

3.7. SysFlow APIs and Utilities (sf-apis repo) 63

SysFlow Telemetry Pipeline, Release 0.4

view(withoid=False, peek=True, peeksize=3, flows=True, ttps=False)
Visualizes the graph in dot format.

Parameters

• withoid (boolean) – indicates whether to show the node ID.

• peek (boolean) – indicates whether to show details about the records associated with the
nodes.

• peeksize (integer) – the number of underlying sysflow records to show in the node.

• flows (boolean) – indicates whether to show flow nodes.

• ttps (boolean) – indicates whether to show tags.

class sysflow.graphlet.NetFlowNode(oid, exe, args)
NetFlowNode

This class represents a netflow node.

Parameters
nf (sysflow.NetFlow) – a netflow node object.

class sysflow.graphlet.Node(oid)
Node

This class represents a graph node, and acts as a super class for specific nodes.

Parameters
node (sysflow.Node) – an abstract node object.

class sysflow.graphlet.ProcessNode(oid, exe, args, uid, user, gid, group, tty)
ProcessNode

This class represents a process node.

Parameters
proc (sysflow.ProcessNode) – a process node object.

SysFlow QL API

class sysflow.sfql.SfqlInterpreter(query: str = None, paths: list = [], inputs: list = [])
SfqlInterpreter

This class takes a sfql expression (and optionally a file containining a library of lists and macros) and produces
a predicate expression that can be matched against sysflow records. Example Usage:

using 'filter' to filter the input stream
reader = FlattenedSFReader('trace.sf')
interpreter = SfqlInterpreter()
query = '- sfql: type = FF'
for r in interpreter.filter(reader, query):

print(r)

Parameters
interpreter (sysflow.SfqlInterpreter) – An interpreter for executing sfql expressions.

64 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

compile(query: str = None, paths: list = [], inputs: list = [])
Compile sfql into a predicate expression to match sysflow records.

Parameters

• query (str) – sfql query.

• paths (list) – a list of paths to file containing sfql list and macro definitions.

• inputs (list) – a list of input streams from where to read sfql list and macro definitions.

enrich(t: T)
Process flattened sysflow record t based on policies.

evaluate(t: T , query: str = None, paths: list = [])→ bool
Evaluate sfql expression against flattened sysflow record t.

Parameters

• reader – individual sysflow record

• query (str) – sfql query.

• paths (list) – a list of paths to file containing sfql list and macro definitions.

filter(reader, query: str = None, paths: list = [])
Filter iterable reader according to sfql expression.

Parameters

• reader (FlattenedSFReader) – sysflow reader

• query (str) – sfql query.

• paths (list) – a list of paths to file containing sfql list and macro definitions.

getAttributes()

Return list of attributes supported by sfql.

class sysflow.sfql.SfqlMapper

3.8 Deployments (sf-deployments repo)

SysFlow can be deployed using Docker Compose, Helm, and binary packages.

3.8.1 Docker Compose

This repository contains utility scripts to deploy a docker telemetry stack.

3.8. Deployments (sf-deployments repo) 65

SysFlow Telemetry Pipeline, Release 0.4

Pre-requisites

• Docker (installing Docker)

• Docker Compose (installing Compose)

To guarantee a smooth deployment, the kernel headers must be installed in the host operating system.

This can usually be done on Debian-like distributions with:

apt-get -y install linux-headers-$(uname -r)

Or, on RHEL-like distributions:

yum -y install kernel-devel-$(uname -r)

Deploy SysFlow

Three deployment configurations are described below: local (collector-only), batch export mode, and stream export
mode. The local deployment stores collected traces on the local filesystem and the full stack deployments export the
collected traces to a S3-compatible object storage server or streams SysFlow records to remote syslog server or ELK
(additional exporters can be implemented as plugins).

Setup

Clone this repository and change directory as follows:

git clone https://github.com/sysflow-telemetry/sf-deployments.git
cd sf-deployments/docker

Local collection probe only

This deployment will install the Sysflow collection probe only, i.e., without an exporter to an external data store (e.g.,
S3). See below for the deploytment of the full telemetry stack.

To start the telemetry probe (collector only):

docker-compose -f docker-compose.collector.yml up

Tip: add container.type!=host to FILTER string located in ./config/.env.collector to filter out host
(non-containerized) events.

To stop the collection probe:

docker-compose -f docker-compose.collector.yml down

66 Chapter 3. License

https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/

SysFlow Telemetry Pipeline, Release 0.4

Batch export

This deployment configuration includes the SysFlow Collector and S3 Exporter.

First, create the docker secrets used to connect to the S3 object store:

echo "<s3 access key>" > ./secrets/access_key
echo "<s3 secret key>" > ./secrets/secret_key

Then, configure the S3 endpoint in the exporter settings (default values point to a local minio object store described
below). Exporter configuration is located in ./config/.env.exporter. Collector settings can be changed in ./
config/.env.collector. Additional settings can be configured directly in compose file.

To start the telemetry stack:

docker-compose -f docker-compose.exporter.yml up

To stop the telemetry stack:

docker-compose -f docker-compose.exporter.yml down

To start the telemetry stack with a local minio object store:

docker-compose -f docker-compose.minio.yml -f docker-compose.exporter.yml up

To stop the local minio instance and the telemetry stack:

docker-compose -f docker-compose.minio.yml -f docker-compose.exporter.yml down

Stream processing

This deployment configuration includes the SysFlow Collector and Processor with rsyslog exporter. Alternatively,
you can change the Processor configuration to stream events to ELK, or any other custom exporter plugin. Check the
Processor’s exporter configuration for details on how to configure the exporter to stream events to other backends.

First, configure the rsyslog endpoint in the processor settings. Processor configuration is located in ./config/.env.
processor. Collector settings can be changed in ./config/.env.collector. Additional settings can be configured
directly in compose file.

To start the telemetry stack:

docker-compose -f docker-compose.processor.yml up

To stop the telemetry stack:

docker-compose -f docker-compose.processor.yml down

3.8. Deployments (sf-deployments repo) 67

https://sysflow.readthedocs.io/en/latest/processor.html#exporter-configuration

SysFlow Telemetry Pipeline, Release 0.4

Sysflow trace inspection

Run sysprint and point it to a trace file. In the examples below, sysprint is an alias for:

docker run --rm -v /mnt/data:/mnt/data sysflowtelemetry/sysprint

Tabular output

sysprint /mnt/data/<trace name>

JSON output

sysprint -o json /mnt/data/<trace name>

CSV output

sysprint -o csv /mnt/data/<trace name>

Inspect traces exported to an object store

sysprint -i s3 -c <s3_endpoint> -a <s3_access_key> -s <s3_secret_key> <bucket_name>

Tip: see all options of the sysprint utility with -h option.

Inspect example traces

Sample trace files are provided in sf-collector/tests. Copy them into /mnt/data to inspect inside sysprint’s
environment.

sysprint /mnt/data/tests/client-server/tcp-client-server.sf

Tip: other samples can be found in the tests directory

Analyzing collected traces

A Jupyter environment is also available for inspecting and implementing analytic notebooks on collected SysFlow
data. It includes APIs for data manipulation using Pandas dataframes and a native query language (sfql) with macro
support. To start it locally with example notebooks, run:

git clone https://github.com/sysflow-telemetry/sf-apis.git && cd sf-apis
docker run --rm -d --name sfnb -v $(pwd)/pynb:/home/jovyan/work -p 8888:8888␣
→˓sysflowtelemetry/sfnb

Then, open a web browser and point it to http://localhost:8888 (alternatively, the remote server name or IP where
the notebook is hosted). To obtain the notebook authentication token, run docker logs sfnb.

68 Chapter 3. License

https://hub.docker.com/r/sysflowtelemetry/sfnb

SysFlow Telemetry Pipeline, Release 0.4

3.8.2 Helm Charts

Helm charts are provided to facilitate the deployment and configuration of SysFlow on Kubernetes.

These charts have been tested on minikube and IBM Cloud Kubernetes Service. They shoud work on vanilla Kubernetes
installations but it’s possible that minor differences in how authentication is handled by different cloud providers require
small modifications to the charts.

These scripts have been tested with helm versions 2 and 3. Some helm commands may not work with other
versions of helm.

Prerequisites

• kubectl (installing kubectl)

• Helm (installing helm)

• Docker (optional)

Install minikube (optional)

To deploy SysFlow on a local Kubernetes instance (for development or testing), start by installing minikube in your
macOS, Linux, or Windows system.

For example, to install minikube in Linux distributions, run:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd64
sudo install minikube-linux-amd64 /usr/local/bin/minikube

Then, start your cluster:

minikube start

Note: to install SysFlow on minikube, set sfcollector.ebpf and sfcollector.mountEtc to true in
values.yaml located inside each chart.

Check the minikube docs for additional installation options.

Tip: run eval $(minikube docker-env) to allow your Docker CLI to connect to minikube’s Docker
environment.

The recommended driver for minikube is VirtualBox. Check the VirtualBox docs for installation instructions for your
environment.

A note about Docker pull limits: If you run into an error when deploying SysFlow on minikube, check
the logs to see if it’s related to the Docker pull limit being reached. It most likely is. To work around
this inconvenience, connect to Minikube’s Docker environment (see above), log into Docker with docker
login command, and pull the desired images manually, before installing the helm charts. Make sure the
images pull policies are set to the default value IfNotPresent.

3.8. Deployments (sf-deployments repo) 69

https://minikube.sigs.k8s.io/
https://www.ibm.com/cloud/kubernetes-service
https://kubernetes.io/docs/tasks/tools/install-kubectl
https://helm.sh/docs/intro/install
https://minikube.sigs.k8s.io/docs/start/
https://www.virtualbox.org/wiki/Downloads

SysFlow Telemetry Pipeline, Release 0.4

Deploy SysFlow

The SysFlow agent can be deployed in S3 (batch) or rsyslog (stream) export configurations.

Setup

Clone this repository and change directory as follows:

git clone https://github.com/sysflow-telemetry/sf-deployments.git
cd sf-deployments/helm

Installing the SysFlow agent with S3 Exporter

In this configuration, SysFlow exports the collected telemetry as trace files (batches of SysFlow records) to any S3-
compliant object storage service.

This chart is located in charts/sf-exporter-chart, which deploys the SysFlow Collector and Exporter as a dae-
monset. The collector monitors the node, and writes trace files to a shared memory volume /mnt/data which the
exporter manages and reads from to push completed traces to a S3-compliant object storage. The /mnt/data/ is
mapped to a tmpfs filesystem, and you can specify its size using the tmpfsSize.

Installation scripts are provided to make installation easier. These scripts set up the environment including k8s se-
crets for S3 authentication. To connect to an S3-compliant data store, first take note of which port the S3 data store
(s3Port) is configured. Minio installations listen on port 9000 by default. Also, if TLS is enabled on the S3 datastore,
ensure s3Secure is true. Ensure that the s3Bucket is set to the desired S3 bucket location. The s3Location (aka
s3_region), s3AccessKey and s3SecretKey and s3Endpoint are each passed in through the installation script if
you use it.

To deploy the SysFlow agent with S3 export:

./scripts/installExporterChart.sh <s3_region> <s3_access_key> <s3_secret_key> <s3_
→˓endpoint> <s3_bucket>

Installing the SysFlow agent with rsyslog exporter

In this configuration, SysFlow exports the collected telemetry as events streamed to a rsyslog collector. This deployment
enables the creation of customized edge pipelines, and offers a built-in policy engine to filter, enrich, and alert on
SysFlow records.

This chart is located in charts/sf-processor-chart, which deploys the SysFlow Collector and Processor as a dae-
monset. The collector monitors the node, and streams SysFlow records to the processor, which executes a configurable
edge analytic pipeline and export events to a rsyslog endpoint.

To deploy the SysFlow agent with rsyslog export:

./scripts/installProcessorChart.sh <syslog_host> <syslog_port> <syslog_proto>

70 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

Checking installation

To check that the install worked, run:

kubectl get pods -n sysflow

To check the log output of the collector container in a pod:

kubectl logs -f -c sfcollector <podname> -n sysflow

To check the log output of the exporter container in a pod:

kubectl logs -f -c sfexporter <podname> -n sysflow

To check the log output of the processor container in a pod:

kubectl logs -f -c sfprocessor <podname> -n sysflow

Removing the SysFlow agent

To remove the SysFlow agent:

./scripts/deleteChart.sh

Advanced customizations

Most of the defaults should work out of the box. The collector is currently set to rotating files in 5 min intervals (or 300
seconds). CGroup resource limits can be set on the collector, exporter, and processor to limit resource usage. These
can be adjusted depending on requirements and resources limitations.

Note: sfcollector.dropMode is set to true by default for performance considerations.

Kubernetes can use different container runtimes. Older versions used the docker runtime; however, newer versions
typically run either containerd or crio. It’s important to know which runtime you have if you want to get the full benefits
of SysFlow. You tell the collector which runtime you are using based on the sock file you refer to in the criPath
variable. If you are using the docker runtime, leave criPath blank. If you are using containerd, set criPath to
“/var/run/containerd/containerd.sock” and if you are using crio, set criPath to “/var/run/crio/crio.sock”. If SysFlow
files are empty or the container name variable is set to incomplete in SysFlow traces, this typically means that the
runtime socket is not connected properly.

Note: the installation script installs the pods into a K8s namespace called sysflow.

Below is the list of customizable attributes for the charts, organized by component. These can be modified directly into
the values.yaml located in each chart’s directory. They can also be set directly into the helm command invoked by
our installation scripts through --set <attribute>=<value> parameters.

3.8. Deployments (sf-deployments repo) 71

SysFlow Telemetry Pipeline, Release 0.4

SysFlow Collector

param-
eter

description default

sfcollec-
tor.imagepullpolicy

Pull policy for image (Always|Never|IfNotPresent) Always

sfcollec-
tor.repository

Image repository sysflowtelemetry/sf-collector

sfcollec-
tor.tag

Image tag latest

sfcollec-
tor.interval

Interval in seconds to roll new trace files 300

sfcollec-
tor.outDir

Directory in which collector writes trace files /mnt/data/

sfcollec-
tor.filter

Filter expression “"container.type!=host and
container.name!=sfexporter
and con-
tainer.name!=sfcollector"”

sfcollec-
tor.criPath

Container runtime socket path. Use this
“/var/run/containerd/containerd.sock”if running containerd run-
time. Use “/var/run/crio/crio.sock” if running crio runtime.

“”

sfcollec-
tor.dropMode

Drop mode filters syscalls in the kernel before they are passed up to the
collector, resulting in much better performance and fewer event drops.
Note: It filters mmap system calls from the event stream.

true

sfcollec-
tor.fileOnly

Filters out any descriptor that is not a file, including unix sockets and
pipes

false

sfcollec-
tor.procFlow

Enables the creation of process flows false

sfcollec-
tor.readMode

Sets mode for reads: 0 enables recording all file reads as flows. 1 dis-
ables all file reads. 2 disables recording file reads to noisy directo-
ries: “/proc/”, “/dev/”, “/sys/”, “//sys/”, “/lib/”, “/lib64/”, “/usr/lib/”,
“/usr/lib64/”.

0

sfcollec-
tor.ebpf

Enables ebpf probe (required for minikube deployment) false

sfcollec-
tor.mountEtc

Mounts etc directory in container (required for minikube and Google
COS)

false

sfcollec-
tor.collectionMode

Template modes for enabling certain system calls. Currently supports
3 modes: flow” - full sysflows, “consume” - file reads, writes, closes
turned off, “nofiles” - no fileevents or fileflows

flow

sfcollec-
tor.enableStats

When enabled, logs stats on containers, processes, networkflows, file-
flows and records written at interval set by “interval” attribute

false

72 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

SysFlow Exporter

pa-
rame-
ter

description default

sfex-
porter.enabled

Indicates whether the exporter will be used in the k8s deployment false

sfex-
porter.imagepullpolicy

Pull policy for image (Always|Never|IfNotPresent) Always

sfex-
porter.repository

Image repository sysflowtelemetry/sf-
exporter

sfex-
porter.tag

Image tag latest

sfex-
porter.log

Exporter logging level. Can be DEBUG, INFO, WARNING, ERROR, CRITICAL INFO

sfex-
porter.type

Type of trace export - “s3” to export to S3 storage, “local” for local copy s3

sfex-
porter.interval

Interval in seconds to check whether to export trace files 5

sfex-
porter.outDir

Directory shared between the collector and exporter and where collector writes /mnt/data/

sfex-
porter.dirs

Directories (comma separated) from which exporter will copy /mnt/data

sfex-
porter.toDir

Directories (comma separated) to copy trace too - only used when type = “local”. Must have
same number of entries as dirs attribute

com-
mented
out

sfex-
porter.mode

modes of copy (comma separated) move-del - move and delete file once finished writing - this
is the only mode local copy supports. cont-update - continuously copy file over at interval
(s3), cont-update-recur - continously update a directory structure recursively (s3). Must have
same number of entries as dirs attribute

move-
del

sfex-
porter.s3Endpoint

S3 host address (only used when type s3) “<ip ad-
dress>”

sfex-
porter.s3Port

S3 port (only used when type s3) 443

sfex-
porter.s3Bucket

S3 bucket where to push traces (only used when type s3). Can be a comma separated list of
buckets. Must have same number of entries as dirs attribute

“<s3
bucket>”

sfex-
porter.s3Location

S3 location (only used when type s3) “<s3 re-
gion>”

sfex-
porter.s3AccessKey

S3 access key (only used when type s3) “<s3
access
key>”

sfex-
porter.s3SecretKey

S3 secret key (only used when type s3) “<s3
secret
key>”

sfex-
porter.s3Secure

S3 connection, true if TLS-enabled, false otherwise (only used when type s3) false

3.8. Deployments (sf-deployments repo) 73

SysFlow Telemetry Pipeline, Release 0.4

SysFlow Processor

parameter description default
sfproces-
sor.imagepullpolicy

Pull policy for image (Always|Never|IfNotPresent) Always

sfproces-
sor.repository

Image repository sysflowtelemetry/sf-
processor

sfprocessor.tag Image tag latest
sfprocessor.export Export type (terminal|file|syslog) syslog
sfproces-
sor.override

Override processor exporter in pipeline.json with values.yaml settings true

sfproces-
sor.syslogHost

rsyslog host address localhost

sfproces-
sor.syslogPort

rsyslog port 514

sfproces-
sor.syslogProto

rsyslog protocol (udp|tcp|tcp+tls) tcp

sfproces-
sor.configMapEnabled

‘true’ if using config map for policy configs ‘true’

sfproces-
sor.findingsDir

Directory to which raw findings are written. Must be the same as the
findings.path value in the pipeline.json

/mnt/findings

3.8.3 Binary packages (deb|rpm)

SysFlow can be deployed directly on the host using its binary packages (since SysFlow 0.4.0).

We package SysFlow for debian- and rpm-based distros.

Debian distributions

Download the SysFlow packages (set $VERSION to a Sysflow release >=0.4.1):

wget https://github.com/sysflow-telemetry/sf-collector/releases/download/$VERSION/
→˓sfcollector-$VERSION-x86_64.deb \

https://github.com/sysflow-telemetry/sf-processor/releases/download/$VERSION/
→˓sfprocessor-$VERSION-x86_64.deb

Install pre-requisites:

apt install -y llvm linux-headers-$(uname -r)

Install the SysFlow packages:

dpkg -i sfcollector-$VERSION-x86_64.deb sfprocessor-$VERSION-x86_64.deb

74 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

RPM distributions

Download the SysFlow packages (set $VERSION to a Sysflow release >=0.4.1):

wget https://github.com/sysflow-telemetry/sf-collector/releases/download/$VERSION/
→˓sfcollector-$VERSION-x86_64.rpm \

https://github.com/sysflow-telemetry/sf-processor/releases/download/$VERSION/
→˓sfprocessor-$VERSION-x86_64.rpm

Install pre-requisites (Instructions for Rhel8 below):

subscription-manager repos --enable="codeready-builder-for-rhel-8-$(/bin/arch)-rpms"
dnf -y update
dnf -y install \

kernel-devel-$(uname -r) \
llvm-toolset

Install the SysFlow packages:

rmp -i sfcollector-$VERSION-x86_64.rpm sfprocessor-$VERSION-x86_64.rpm

Running

Start the SysFlow systemd service:

sysflow start

Check SysFlow service status:

sysflow status

Stop the SysFlow service:

sysflow stop

Configuration

Configuration options can be changed in /etc/sysflow. The Processor configuration is located in /etc/sysflow/
pipelines/pipeline.local.json and can be used to change the processor configuration from its default settings.
The Collector and systemd service configurations are located in /etc/sysflow/conf/sysflow.env.

3.9 License

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.
(continues on next page)

3.9. License 75

SysFlow Telemetry Pipeline, Release 0.4

(continued from previous page)

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise

(continues on next page)

76 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

(continued from previous page)

designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed

(continues on next page)

3.9. License 77

SysFlow Telemetry Pipeline, Release 0.4

(continued from previous page)

as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

(continues on next page)

78 Chapter 3. License

SysFlow Telemetry Pipeline, Release 0.4

(continued from previous page)

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

3.10 Contributing

3.10.1 Contributing In General

Our project welcomes external contributions.

To contribute code or documentation, please submit a pull request to the proper github repositories.

A good way to familiarize yourself with the codebase and contribution process is to look for and tackle low-hanging
fruit in the github issue trackers associated with projects. Before embarking on a more ambitious contribution, please
quickly get in touch with us.

Note: We appreciate your effort, and want to avoid a situation where a contribution requires extensive rework
(by you or by us), sits in backlog for a long time, or cannot be accepted at all!

Proposing new features

If you would like to implement a new feature, please raise an issue in the appropriate repository before sending a pull
request so the feature can be discussed. This is to avoid you wasting your valuable time working on a feature that the
project developers are not interested in accepting into the code base.

Fixing bugs

If you would like to fix a bug, please raise an issue in the appropriate repository before sending a pull request so it can
be tracked.

Merge approval

The project maintainers use LGTM (Looks Good To Me) in comments on the code review to indicate acceptance. A
change requires LGTMs from two of the maintainers of each component affected.

For a list of the maintainers, see the MAINTAINERS.md page in the appropriate repository.

3.10. Contributing 79

SysFlow Telemetry Pipeline, Release 0.4

3.10.2 Legal

Each source file must include a license header for the Apache Software License 2.0. Using the SPDX format is the
simplest approach. e.g.

/*
Copyright <holder> All Rights Reserved.

SPDX-License-Identifier: Apache-2.0
*/

We have tried to make it as easy as possible to make contributions. This applies to how we handle the legal aspects of
contribution. We use the same approach - the Developer’s Certificate of Origin 1.1 (DCO) - that the Linux® Kernel
community uses to manage code contributions.

We simply ask that when submitting a patch for review, the developer must include a sign-off statement in the commit
message.

Here is an example Signed-off-by line, which indicates that the submitter accepts the DCO:

Signed-off-by: John Doe <john.doe@example.com>

You can include this automatically when you commit a change to your local git repository using the following command:

git commit -s

3.10.3 Communication

Please feel free to connect with us on our Slack channel or via email. Note that the projects in this repository are not
formal products. As a result, the communication channels are to the maintainers and not to a support staff.

3.10.4 Setup

The documentation is a work in progress but should provide a good overview on how to get started with the project.
The Dockerfile also provides a treasure trove of information on how to build the application, dependencies, and how to
test the collector.

3.10.5 Testing

This project is in its infancy and with limited resources we haven’t built many testers for the projects. For the sf-
collector, we do have a set of unit tests that test the coverage of most of the events of interest in sf-collector/tests.
These tests can be run using the bats testing framework. Directions on how to install bats are in the accompanied link.
To run the tests, run bats -t tests.bat from the tests directory. Note, that the tests also rely on python3. Before
conducting a pull request, these unit tests should be run. Note, there is a version of the docker image with a testing
tag that contains bats and the unit tests. This might be useful for testing. Also, conducting a load test and running the
application under valgrind is desirable for pull requests.

80 Chapter 3. License

https://github.com/hyperledger/fabric/blob/master/docs/source/DCO1.1.txt
https://elinux.org/Developer_Certificate_Of_Origin
https://join.slack.com/t/sysflow-telemetry/shared_invite/enQtODA5OTA3NjE0MTAzLTlkMGJlZDQzYTc3MzhjMzUwNDExNmYyNWY0NWIwODNjYmRhYWEwNGU0ZmFkNGQ2NzVmYjYxMWFjYTM1MzA5YWQ
mailto:sysflow@us.ibm.com
https://github.com/bats-core/bats-core

SysFlow Telemetry Pipeline, Release 0.4

3.10.6 Coding style guidelines

We follow the LLVM Coding standards where possible across the projects. There is a .clang-format file in the master
repo clang-format that can be used in conjunction with ClangFormat Tool to automatically format code. For linting,
we use Clang Tidy Linter. This is referenced in the sf-collector Makefile.

3.11 Code of Conduct

3.12 Contributor Covenant Code of Conduct

3.12.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

3.12.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

3.12.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

3.11. Code of Conduct 81

https://llvm.org/docs/CodingStandards.html
https://github.com/sysflow-telemetry/sf-collector/blob/master/src/.clang-format
https://clang.llvm.org/docs/ClangFormat.html
https://clang.llvm.org/extra/clang-tidy/

SysFlow Telemetry Pipeline, Release 0.4

3.12.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

3.12.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at
Slack channel or via email. The project team will review and investigate all complaints, and will respond in a way that
it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the
reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

3.12.6 Attribution

This Code of Conduct is adapted from the Qiskit project’s Code of Conduct and has roots from the Contributor
Covenant, version 1.4, available at version.

3.13 Talks & Publications

If citing SysFlow, please use [TAS20].

Below you can find a complete list of talks and papers associated with SysFlow.

Note: Please reach out to us if you have an entry to add to this list.

82 Chapter 3. License

https://join.slack.com/t/sysflow-telemetry/shared_invite/enQtODA5OTA3NjE0MTAzLTlkMGJlZDQzYTc3MzhjMzUwNDExNmYyNWY0NWIwODNjYmRhYWEwNGU0ZmFkNGQ2NzVmYjYxMWFjYTM1MzA5YWQ
mailto:sysflow@us.ibm.com
https://github.com/Qiskit/qiskit/blob/master/CODE_OF_CONDUCT.md
https://www.contributor-covenant.org/
https://www.contributor-covenant.org/
http://contributor-covenant.org/version/1/4
https://sysflow.readthedocs.io/en/latest/index.html#keep-in-touch

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

83

SysFlow Telemetry Pipeline, Release 0.4

84 Chapter 4. Indices and tables

BIBLIOGRAPHY

[TAS20] Teryl Taylor, Frederico Araujo, and Xiaokui Shu. Towards an open format for scalable system telemetry.
In IEEE International Conference on Big Data (Big Data), 1031–1040. 2020. URL: https://arxiv.org/abs/
2101.10474.

[BATJ24] William Blair, Frederico Araujo, Teryl Taylor, and Jiyong Jang. Automated synthesis of effect graph policies
for microservice-aware stateful system call specialization. In 2024 IEEE Symposium on Security and Privacy
(SP), 64–64. 2024. URL: https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00064.

[AT23] Frederico Araujo and Teryl Taylor. Relational observability for cloud-native security and data science. 2023.
URL: https://sched.co/1K5IT.

[JAT22] Trent Jaeger, Frederico Araujo, and Teryl Taylor. Provenance tracking with
attack graphs using sysflow. 2022. URL: https://avengercon.org/workshop/
Provenance-Tracking-With-Attack-Graphs-Using-SysFlow/.

[AT22] Frederico Araujo and Teryl Taylor. Self-modulating endpoint observability. 2022. URL: https://sched.co/
lDbn.

[SATJ21] Xiaokui Shu, Frederico Araujo, Teryl Taylor, and Jiyong Jang. An open stack for threat hunting in hybrid
cloud with connected observability. 2021. URL: https://europe-arsenal-cfp.blackhat.com/.

[AT21] Frederico Araujo and Teryl Taylor. A pluggable edge-processing pipeline for SysFlow. 2021. URL: https:
//sched.co/ePsl.

[BATJ21] William Blair, Frederico Araujo, Teryl Taylor, and Jiyong Jang. Microservice-aware reference monitoring
through hybrid program analysis. 2021. URL: https://sched.co/ePs3.

[AT20] Frederico Araujo and Teryl Taylor. SysFlow: scalable system telemetry for improved security analytics.
2020. URL: https://sched.co/VPW3.

85

https://arxiv.org/abs/2101.10474
https://arxiv.org/abs/2101.10474
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00064
https://sched.co/1K5IT
https://avengercon.org/workshop/Provenance-Tracking-With-Attack-Graphs-Using-SysFlow/
https://avengercon.org/workshop/Provenance-Tracking-With-Attack-Graphs-Using-SysFlow/
https://sched.co/lDbn
https://sched.co/lDbn
https://europe-arsenal-cfp.blackhat.com/
https://sched.co/ePsl
https://sched.co/ePsl
https://sched.co/ePs3
https://sched.co/VPW3

SysFlow Telemetry Pipeline, Release 0.4

86 Bibliography

PYTHON MODULE INDEX

s
sysflow.formatter, 57
sysflow.graphlet, 62
sysflow.objtypes, 60
sysflow.opflags, 60
sysflow.reader, 56
sysflow.sfql, 64
sysflow.utils, 60

87

SysFlow Telemetry Pipeline, Release 0.4

88 Python Module Index

INDEX

A
applyFuncJson() (sysflow.formatter.SFFormatter

method), 58
associatedMitigations() (sysflow.graphlet.Graphlet

method), 62

C
compare() (sysflow.graphlet.Graphlet method), 62
compile() (sysflow.sfql.SfqlInterpreter method), 64
countermeasures() (sysflow.graphlet.Graphlet

method), 63

D
data() (sysflow.graphlet.Graphlet method), 63
df() (sysflow.graphlet.Graphlet method), 63

E
Edge (class in sysflow.graphlet), 62
enableAllFields() (sysflow.formatter.SFFormatter

method), 58
enableK8sEventFields() (sys-

flow.formatter.SFFormatter method), 58
enablePodFields() (sysflow.formatter.SFFormatter

method), 58
enrich() (sysflow.sfql.SfqlInterpreter method), 65
evaluate() (sysflow.sfql.SfqlInterpreter method), 65
EvtEdge (class in sysflow.graphlet), 62

F
FileFlowNode (class in sysflow.graphlet), 62
filter() (sysflow.sfql.SfqlInterpreter method), 65
FlattenedSFReader (class in sysflow.reader), 56
FlowEdge (class in sysflow.graphlet), 62

G
getAttributes() (sysflow.sfql.SfqlInterpreter method),

65
getEnvStr() (in module sysflow.utils), 60
getFields() (sysflow.formatter.SFFormatter method),

58
getIpIntStr() (in module sysflow.utils), 60

getNetFlowStr() (in module sysflow.utils), 60
getOpenFlags() (in module sysflow.utils), 61
getOpFlags() (in module sysflow.utils), 60
getOpFlagsStr() (in module sysflow.utils), 60
getOpStr() (in module sysflow.utils), 61
getProcess() (sysflow.reader.FlattenedSFReader

method), 57
getTimeStr() (in module sysflow.utils), 61
getTimeStrIso8601() (in module sysflow.utils), 61
Graphlet (class in sysflow.graphlet), 62

M
mitigations() (sysflow.graphlet.Graphlet method), 63
module

sysflow.formatter, 57
sysflow.graphlet, 62
sysflow.objtypes, 60
sysflow.opflags, 60
sysflow.reader, 56
sysflow.sfql, 64
sysflow.utils, 60

N
NestedNamespace (class in sysflow.reader), 57
NetFlowNode (class in sysflow.graphlet), 64
Node (class in sysflow.graphlet), 64

O
ObjectTypes (class in sysflow.objtypes), 60

P
ProcessNode (class in sysflow.graphlet), 64

S
SFFormatter (class in sysflow.formatter), 57
SfqlInterpreter (class in sysflow.sfql), 64
SfqlMapper (class in sysflow.sfql), 65
SFReader (class in sysflow.reader), 57
sysflow.formatter

module, 57
sysflow.graphlet

89

SysFlow Telemetry Pipeline, Release 0.4

module, 62
sysflow.objtypes

module, 60
sysflow.opflags

module, 60
sysflow.reader

module, 56
sysflow.sfql

module, 64
sysflow.utils

module, 60

T
tags() (sysflow.graphlet.Graphlet method), 63
toCsvFile() (sysflow.formatter.SFFormatter method),

58
toDataframe() (sysflow.formatter.SFFormatter

method), 58
toJson() (sysflow.formatter.SFFormatter method), 59
toJsonFile() (sysflow.formatter.SFFormatter method),

59
toJsonStdOut() (sysflow.formatter.SFFormatter

method), 59
toStdOut() (sysflow.formatter.SFFormatter method), 59
ttps() (sysflow.graphlet.Graphlet method), 63

V
view() (sysflow.graphlet.Graphlet method), 63

90 Index

	Keep in touch
	Bugs & Feature requests
	License
	Quick Start
	Deployment options
	Inspecting collected traces
	Analyzing collected traces

	SysFlow Specification
	Overview
	Entities
	Object ID
	State
	Header
	Container
	Pods
	Process
	File

	Events
	Operation Flags
	Process Event
	File Event
	Network Event
	K8s Event

	Flows
	Process Flow
	File Flow
	Network Flow

	LibSysFlow
	Basic Usage
	Public API
	SysFlowConfig
	SysFlowDriver

	Installation
	Debian
	RPM
	Alpine (musl)

	Compilation
	Advanced Usage
	Configuration
	Exception Handling
	Logging

	SysFlow Collector (sf-collector repo)
	Build
	Cloning sources
	Manifest
	Building using Docker
	Building directly on a host
	Binary Packaging

	Running
	Command line usage
	Examples

	Docker usage

	Event rate optimization

	SysFlow Processor (sf-processor repo)
	Pre-requisites
	Build
	Usage
	Configuration
	Policy engine configuration
	Exporter configuration
	File
	Syslog
	ElasticSearch

	Environment variables
	Rate limiter configuration (experimental)

	Policy Language
	Attribute names
	$ Jsonpath Expressions
	Operations
	User-defined Actions

	Plugins
	Pre-requisites
	Processor Plugins
	Interface
	Example
	Build
	Plugin builder

	Handler Plugins
	Interface
	Build
	Plugin builder

	Action Plugins
	Interface
	Build
	Plugin builder

	Docker usage
	Processor environment

	SysFlow Exporter (sf-exporter repo)
	Build
	Docker usage
	Development

	SysFlow APIs and Utilities (sf-apis repo)
	SysFlow APIs and Utilities
	Cloning source
	Avro IDL and schema files
	SysFlow Avro C++
	SysFlow Avro Python 3
	SysFlow utilities
	sysprint

	SysFlow Python API Reference
	SysFlow Reader API
	SysFlow Formatter API
	SysFlow Object Types
	SysFlow Utils API
	SysFlow Graphlet API
	SysFlow QL API

	Deployments (sf-deployments repo)
	Docker Compose
	Pre-requisites
	Deploy SysFlow
	Setup
	Local collection probe only
	Batch export
	Stream processing

	Sysflow trace inspection
	Tabular output
	JSON output
	CSV output
	Inspect traces exported to an object store
	Inspect example traces

	Analyzing collected traces

	Helm Charts
	Prerequisites
	Install minikube (optional)
	Deploy SysFlow
	Setup
	Installing the SysFlow agent with S3 Exporter
	Installing the SysFlow agent with rsyslog exporter
	Checking installation
	Removing the SysFlow agent
	Advanced customizations
	SysFlow Collector
	SysFlow Exporter
	SysFlow Processor

	Binary packages (deb|rpm)
	Debian distributions
	RPM distributions
	Running
	Configuration

	License
	Contributing
	Contributing In General
	Proposing new features
	Fixing bugs
	Merge approval

	Legal
	Communication
	Setup
	Testing
	Coding style guidelines

	Code of Conduct
	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Our Responsibilities
	Scope
	Enforcement
	Attribution

	Talks & Publications

	Indices and tables
	Bibliography
	Python Module Index
	Index

